Skip to main content

CONTROLS tackles fibre-reinforced concrete with new testing system

Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings. However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specim
July 19, 2017 Read time: 2 mins
Configuration of ADVANTEST controls system with flexural testing frame
Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings.


However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specimen and the consequent loss of the test results. For this reason, the International Standards require a minimum frame stiffness of 200 kN/mm.

2139 CONTROLS has recently added to its range of flexural testing frames with a new 200 kN capacity model especially designed to test FRC and sprayed concrete specimens, exceeding the Standards' stiffness requirements. The additional stiffness comes from the construction of the frame sections and the layout which keeps the specimen aligned with the frame crossbeams maximising structural rigidity. The new layout also allows easier frontal specimen loading and positioning, according to CONTROLS. It can accommodate large specimens such as slabs, flagstones, concrete beams and kerbs up to 650mm long. The frame is fitted with a high-accuracy load cell and can be provided with a LDT displacement transducer to read piston travel.

For more information on companies in this article

Related Content

  • Czech bridge sees world formwork debut
    July 23, 2012
    The Czech government is investing heavily in upgrading and modernising the country's top-tier transportation infrastructure. This year alone, building works with a total investment of over E1.6 billion are planned or underway on the Czech motorway and main road network. Completion of the D8 motorway between the Czech capital Prague and Dresden in the east of Germany has a high priority, and as part of this large-scale project, the contracting consortium of SMP and Metrostav is erecting the 585m long Prosmyk
  • Emergent markets key for formwork sector growth
    May 21, 2014
    Central and south-east Europe are hotbeds for new highway infrastructure projects utilising cutting-edge formwork solutions, while a number of leading formwork manufacturers are also looking at emergent markets for growth. Guy Woodford reports Travelling between Hungary’s capital Budapest and Southern Dalmatia now takes less time thanks to the Pan-European Corridor Vc – European route 73. Numerous tunnels and bridges are erected along the 397km stretch of the European route 73 through Bosnia owing to the
  • Doka’s Voest Bridge bypass project
    February 10, 2020
    The Voest Bridge over the Danube River is part of the A7 Mühlkreis Autobahn through Linz, Austria, is 40 years. Two bypass bridges are being constructed alongside the existing cable-stayed bridge as part of the client ASFINAG’s strategy to boost traffic capacity - around 100,000 vehicles cross the old bridge each day.
  • Bridge design using flow modelling techniques
    February 17, 2012
    SBG has set numerous engineering precedents with its hugely innovative Jamarat Bridge project in Saudi Arabia