Skip to main content

CONTROLS tackles fibre-reinforced concrete with new testing system

Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings. However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specim
July 19, 2017 Read time: 2 mins
Configuration of ADVANTEST controls system with flexural testing frame
Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings.


However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specimen and the consequent loss of the test results. For this reason, the International Standards require a minimum frame stiffness of 200 kN/mm.

2139 CONTROLS has recently added to its range of flexural testing frames with a new 200 kN capacity model especially designed to test FRC and sprayed concrete specimens, exceeding the Standards' stiffness requirements. The additional stiffness comes from the construction of the frame sections and the layout which keeps the specimen aligned with the frame crossbeams maximising structural rigidity. The new layout also allows easier frontal specimen loading and positioning, according to CONTROLS. It can accommodate large specimens such as slabs, flagstones, concrete beams and kerbs up to 650mm long. The frame is fitted with a high-accuracy load cell and can be provided with a LDT displacement transducer to read piston travel.

For more information on companies in this article

Related Content

  • Putting roller compacted concrete to the test
    June 28, 2013
    Although it has been around since the 1970s, roller compacted concrete (RCC) is starting to look a whole lot more attractive, thanks to the rising price of bitumen. Now the challenge is to define specifications and tests to help ensure quality - Kristina Smith reports. At a meeting of the American Concrete Pavement Association in December 2011, there was a sea-change in the attitude towards roller compacted concrete (RCC). Up until that point, the feeling among the 400-plus members, of which half are contra
  • A new highway for northern Colombia
    July 17, 2023
    The Pamplona-Cúcuta highway is playing an important role for the development of northern Colombia
  • TecnoTest’s new computerised work station can carry out large-scale testing of concrete cubes
    April 11, 2013
    A new version of TecnoTest’s computerised work station for daily, large-scale testing of concrete cubes was installed in Doha, Qatar in January this year. The KC 400/WG has been put to work for ASHGHAL, Qatar’s public works department. TecnoTest improved the work station with input from customers such as Istituto Giordano of Bellaria and ANAS, both of which have been using the original version for many years. The KC 400/WG benefits from improved software, operating system and interface and a hydraulic contr
  • VIDEO: Huesker explains “Interaction flexibility”
    August 4, 2017
    Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures. Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.