Skip to main content

Shaking all over: controlled frequency vibration for concrete

The use of controlled frequency vibration for concrete continues to grow, writes Paul Jaworski Controlled frequency vibration (CFV) technology has been around since the mid-1990s for concrete pavement applications. The technology has seen a gradual increase in acceptance, particularly in certain applications. For the 0- to 37mm (1.5”) slump pavement mix designs, many contractors were experiencing material separation due to speeds over 8,000vibrations/minute (VPM). With the wide variability of concrete
November 28, 2018 Read time: 4 mins
CFVs have become the standard for use in concrete pavement construction in the US
The use of controlled frequency vibration for concrete continues to grow, writes Paul Jaworski


Controlled frequency vibration (CFV) technology has been around since the mid-1990s for concrete pavement applications. The technology has seen a gradual increase in acceptance, particularly in certain applications.

For the 0- to 37mm (1.5”) slump pavement mix designs, many contractors were experiencing material separation due to speeds over 8,000vibrations/minute (VPM). With the wide variability of concrete materials, moisture levels, batching uniformity, chemical incompatibilities, and slump loss rates, vibrator speeds needed to be highly controlled and predictable.

As a result, CFVs have become standard in the US construction sector. Concrete surfaces used in pedestrian ways, roads, and runways are now generally restricted to using CFVs for placement purposes. There are various manufacturers of hydraulic paving vibrators and the firms have developed an array of products that are similar in dynamics.

These paving vibrators feature sensors that tell the machine operator what speeds are being generated. With accurate speed control systems, the contractors learned to set the vibrator speed to deliver the desired results. From this learning curve, individual agencies have set vibrator speed ranges as specification for pavement mixes. Over a period of years in the US, CFVs have now become the standard for use in concrete pavement construction.

There are some important principles to be employed, with the data that is collected from vibrator speed logs being examined against the core samples from the pavement. This ensures that the effect of the vibration energy on the concrete can be properly evaluated. Higher vibrator speeds can cause surface problems from material separation. Those issues include permeability, poor aggregate arrangement, inconsistent surfaces and a greater susceptibility to freeze/thaw damage, resulting in a need for early repairs.

Improved CFV products have emerged in recent times as the technology has evolved. For decades, the success of CFVs did not grow proportionately to the growth in low-viscosity pumpable concrete for commercial applications.

However, the gap between commercial mix design and vibration technology is starting to close with the introduction of several CFV products in the industry. Progress has been attributed to better testing methodology, vibrator speed specifications, and more widespread training. Increased use of CFV technology shows that controlled vibration helps to minimise blemishes in concrete.

In the past, some mixes, placement variability, and slump values have seemed to be sufficiently vibrated when using conventional tools that have no accurately measured dynamic behaviour pattern. Performance characteristics of these tools has also varied from manufacturer to manufacturer. However more accurate analysis carried out in recent times has shown that these tools actually speed up when encountering lower concrete viscosities and will slow when viscosities are higher. Many of these tools are still in use, having survived since the 11,000VPM commercial specification was introduced by the American Concrete Institute (ACI) in the 1970s.


There are shortcomings with such equipment. When mixes feature a low-viscosity with large amounts of available water, uncontrolled frequency vibrators force water to the form faces, resulting in blemishes. But when vibrator speeds are controlled for low-viscosity concrete, blemishes are controlled.

Understandably, the use of CFV technology is on the rise, given the improved results these units can deliver. Industry studies have highlighted the separation issues that result when available water present in commercial mixes ends up as surface blemishes on form faces. And when a concrete structure is intended to display any architectural value in addition to its structural properties (such as for a bridge), patching and self-consolidating concrete have been viable options.

However a more simple answer to these over-vibration issues has been to control and lower the speeds so that these become more compatible with low-viscosity pumpable mixes. For modern projects, compatible vibrator speeds are applied to test samples during the pre-construction phase.

As contractors tackle the material, pumping, and batching variability issues, they are beginning to resolve surface issues by increasing the use of CFV technology, the quality of work delivered is generally improving.

In other words, controlled frequency vibration is here to stay.

*Paul Jaworski, Minnich Manufacturing Research and Development

Related Content

  • THIS is a Paving Project– The I-15 CORE
    December 20, 2012
    Provo, Utah – The scope of the I-15 Corridor Expansion Project (I-15 CORE) in the state of Utah is nearly unprecedented because of the size of the project and the short completion deadline. Twenty-four miles (38.6 km) of removal and replacement of Interstate 15 between Lehi and Spanish Fork, widening the number of traveling lanes by two, for up to six lanes in each direction in 35 months. The new 364 lane miles (586 km) of concrete roadway will be slipformed 12 or 12.5 inches (305 or 318 mm) thick for a tot
  • Protecting concrete structures to boost working life
    January 4, 2016
    A new startup business with its origins in a Purdue University innovation could help extend the lifetime of concrete structures. Paul Imbrock, founder and president of Environmental Concrete Products, said the company's Fluid iSoylator product can be used to protect new and existing concrete. He said hardened concrete sustains damage when fluids on the surface are absorbed into its network of pores, similar to those in a sponge. "When the fluid, which could be water that contains salts or other ions,
  • High quality asphalt compaction from new generation machines
    June 20, 2017
    The latest developments in asphalt compaction equipment will help boost productivity and finish quality. The new generation compactors can utilise the latest generation machine control tools to deliver quality within the short timeframe determined by the asphalt temperature. Ammann has broadened its asphalt compaction range with the addition of the new ARP 95 K pivot-steer roller and the articulated ARX 90 and ARX 26 models. These units are available with Ammann’s proprietary ACE compaction systems to optim
  • Controlled demolition development
    January 25, 2017
    The development of reliable hydraulic attachments has brought a revolution in demolition technology. The hydraulic breaker, pioneered by the Krupp and Montabert brands, has firmly taken hold with a huge range of manufacturers now offering machines. Hydraulic attachment specialists such as Atlas Copco, Indeco and Sandvik (with its Rammer brand) now offer a range of tools that can deliver high efficiency and safety in demolition work. Meanwhile, developments with smaller tools offer productive methods for rep