Skip to main content

Asphalt paving trial for mat quality using MTVs

An asphalt paving trial at Rome Airport tested mat quality with and without the use of MTVs Rome’s airport Fiumicino or the Leonardo da Vinci Airport of Rome is one of Europe’s busiest airports and lies 25.6km southwest of the city, a 30-minute train ride away.
December 8, 2015 Read time: 4 mins
Local contractor Pavimental used milling machines to remove the old surface of Rome Airport’s runway before bringing in a paving train for resurfacing
RSS

An asphalt paving trial at Rome Airport tested mat quality with and without the use of MTVs

Rome’s airport Fiumicino or the Leonardo da Vinci Airport of Rome is one of Europe’s busiest airports and lies 25.6km southwest of the city, a 30-minute train ride away. Handling just over 38.5 million passengers in 2014, the airport’s three runways carry heavy traffic, so much so that the runway 16L/34R recently required resurfacing. The 3,902m long by 60m wide runway had to be milled and repaved, with local contractor Pavimental winning the contract. The company is considered the leader in asphalt production in Italy.

Before full paving production began on the project, Pavimental wanted to test whether a 1252 Roadtec SB-2500e Shuttle Buggy material transfer vehicle (MTV) could reduce thermal segregation in the hot-mix asphalt (HMA) and ensure a higher-quality finished mat.

The Fiumicino 16L/34R runway project was less than five minutes away from the asphalt plant so the contractor was initially doubtful that MTVs could offer benefits.

The contractor used its 1194 Vögele Super 2100-3i tracked paver for the work, a heavy-duty machine with a maximum laydown rate of 1,100tonnes/hour and a maximum pave width of 13m.

For the three tests conducted, Pavimental had 1228 MOBA as an independent quality controller. MOBA used its PAVE-IR Scan to detect the thermal segregation on the recent paved test layers. The PAVE-IR Scan allows recording of asphalt temperature while paving. It depict a temperature profile and highlights the differences that lead to thermal segregation of the material and identifies areas where premature wear and tear of the road may occur.

Pavimental used the PAVE-IR Scan system to show the overall quality achieved by each paving method. One was paving with the help of the Roadtec SB-2500e/ex Shuttle Buggy MTV. Another was with HMA trucked from the production plant and loaded into the paver.

The determining factor in the research test was to measure the level of thermal segregation occurring in the asphalt mat behind each paving method. In the past, extensive testing resulted in Stroup-Gardiner and Brown establishing in 2000 a classification of thermal segregation and its related consequences. In the classification system, when temperature differences are below 10ºC segregation is considered nonexistent, between 10ºC and 16ºC it is low, between 17ºC and 21ºC medium and it is considered high when over 21ºC.

The higher the measured temperature, the more likely the paved surface will experience fatigue and be less durable. What all the tests point out is that temperature deviations will make pavement less durable and will increase maintenance costs.

For the Rome international airport test, a lift was laid by each method. The testing occurred over a six-day period with test mats laid by each method.

MOBA used infrared scanning to examine the level of thermal segregation. The results concluded that the finished pavement quality from each paving method show a temperature change of <8ºC when using the Roadtec Shuttle Buggy and temperatures varied from between 20ºC and 25ºC when trucked HMA was loaded directly into the paver.

The collected data shows that when the Roadtec Shuttle Buggy is used the maximum thermal segregation detected is 8ºC, so the results indicate NULL segregation, while when the PowerFeeder or direct truck-to-paver methods are used the temperature differentials can be more than 20ºC at any given time. The trucked-in methods will have durability that is expected to be about half of what can be achieved through the Roadtec Shuttle Buggy, which remixes the HMA and provides continuous paving.

Pavimental found the results useful. The initial thinking was that with the HMA production source so close to the jobsite, there would be no need for a material transfer vehicle. However the results of the thermal segregation tests suggest otherwise.

RSS

For more information on companies in this article

Related Content

  • Vögele’s new compact asphalt paver offers sophistication
    February 17, 2016
    Vögele says that its SUPER 800-3i is compact and versatile, offering a range of pave widths extends from 0.5-3.5m. The machine can operate in confined spaces such as in towns and cities and suits duties with local authority contractors. Of note is that it has an AB 220 TV screed, a tamper vibrating model that is unusual in this compact asphalt paving class as competing models tend to feature vibration only.
  • Vögele’s new compact asphalt paver offers sophistication
    January 6, 2017
    Vögele says that its SUPER 800-3i is compact and versatile, offering a range of pave widths extends from 0.5-3.5m. The machine can operate in confined spaces such as in towns and cities and suits duties with local authority contractors. Of note is that it has an AB 220 TV screed, a tamper vibrating model that is unusual in this compact asphalt paving class as competing models tend to feature vibration only.
  • G&Z launching new concrete placer
    March 3, 2015
    New material placer being introduced by G&Z – Mike Woof writes. Guntert & Zimmerman is now lifting the wraps from its new MP550 material placer, having announced last year that design work was underway. This machine is designed to boost throughput and overall productivity on site, while being versatile, easy to maintain and service and offering low running costs. According to the firm, the MP550 is the most versatile material placer on the market as it can handle a wide variety of concrete slumps as well as
  • Easy operating
    July 31, 2012
    Modern asphalt plants are a far cry from the early models, and are capable of producing a wide variety of mixes at the touch of a button. Patrick Smith reports Cutting-edge software-based control technology makes today's asphalt mixing plants simple and efficient to operate. The tightening of clean air regulations is reducing the emissions from the plants, and the current focus is on the goal of raising the processed portion of reclaimed asphalt (RA) towards 100%, says Ammann Group, which has been involved