Skip to main content

Specialist asphalt supply for road upgrade

A major road in Norfolk has been improved following the installation of Tarmac’s largest ever supply of a specialist asphalt solution. This material grade has been designed to maintain roads where the underlying concrete has deteriorated
November 10, 2021 Read time: 2 mins
A special asphalt grade has been used to overlay deteriorating concrete on the A11 in the UK

The lean concrete base of an 8km section on both carriageways of the A11 near Thetford was identified as in need of repair. Tarmac was tasked with finding a long-lasting surface that would cut life cycle maintenance costs.

Working in partnership with National Highways and project consultants Atkins and following a whole-life cost analysis, Tarmac suggested the use of its fully recyclable ULTILAYER SAMI asphalt, a high-performance stress absorbing membrane interlayer. The team laid 80,000tonnes of material, including 7,000tonnes of ULTILAYER SAMI, the most Tarmac has ever supplied to a single project. In addition to being fully recyclable, this special asphalt is expected to increase the life of the pavement, resulting in lower maintenance requirements.

Phil Greenin, contracting framework delivery manager at Tarmac, said: “ULTILAYER SAMI is a proven technology that has been developed to tackle deteriorating concrete roads. Its previous applications on the strategic network, including on the M25, have demonstrated that its greater whole-life performance can extend pavement life, deliver longer resurfacing intervals and lower maintenance requirements.

Conventional asphalt grades used to overlay concrete often suffer from reflective cracking caused by thermal expansion in the underlying concrete and the effects of traffic loading. This leads to water ingress and failure that requires remedial work.

Designed to be laid onto concrete, the material is a finely-graded asphalt containing a heavily polymer modified binder (PMB), which provides a durable buffer to accommodate movement and prevent cracks appearing in the asphalt layers above. This was overlaid with a polymer modified binder course and surface course material to further increase the crack resistance of the carriageway.   

In addition to the new surface’s improved sustainability credentials, the Tarmac project team is ensuring that 100% of the old surface material will be recycled and is implementing a ‘carbon calculator’ to accurately identify where other emissions savings have been achieved.

For more information on companies in this article

Related Content

  • Recycling advances from Wirtgen
    June 18, 2012
    German firm Wirtgen is retaining its lead in road recycling technologies – Mike Woof writes Tests on cold recycling with a new layer thickness using Wirtgen's sophisticated WR 4200 machine have shown impressive results according to the firm. The road construction and traffic authority Landesbetrieb Mobilität (LBM) Cochem-Koblenz commissioned a pilot project as part of its plan to optimise the cold in-place recycling process (CIR). The aim was to examine the extent to which the layer thickness can be reduced
  • Wirtgen group machines flying high at İstanbul Yeni Havalimanı
    May 21, 2018
    Plant and machines from Wirtgen, Vögele, Hamm and Benninghoven are playing a vital part in the construction of Istanbul’s new airport . Istanbul’s new airport is Turkey’s biggest infrastructure project ever. It is also expected to become the world's largest airport by estimated passenger numbers.
  • Beyond business as usual: Addressing the energy and carbon performance of our road infrastructure
    October 5, 2021
    Following recent policy-setting decisions by authorities in Europe and North America to achieve net zero emissions economy-wide no later than 2050, IRF has invited contributions from notable industry innovators in preparation for the 18th IRF World Meeting & Exhibition. Jonathan Davis, co-founder and CCO at Uberbinder, shares his thoughts on the historic responsibility and opportunity for the road industry to enhance its energy and carbon performance
  • Cold climate binder selection, a tricky business
    May 16, 2017
    Binder selection in cold climates is especially critical for extended pavement life, as Robert Otto Rasmussen, vice president and chief engineer of Transtec Group, explains. The cold climate found in regions such as Canada and the northern regions of the US and Europe poses a particular challenge to engineering a long-lasting, high-quality pavement. Pavements constructed with asphalt in those regions are affected by the asphalt binder’s sensitivity to temperature. Choosing a binder wisely is imperative for