Skip to main content

'Soft' option gets results

Soft engineering techniques, used to prevent soil erosion and stabilise steep cuts and embankments, have allowed engineers to successfully widen the M1 motorway in the UK. Over the 50km length of the work (25km northbound, 25km southbound) on a busy section of the motorway near the city of Nottingham, a total of 48km of slopes had to be modified, split roughly between cutting and embankment. The UK Highways Agency requirements for the work meant that wholesale widening of the corridor was not possible: the
February 8, 2012 Read time: 4 mins
Soft engineering techniques, used to prevent soil erosion and stabilise steep cuts and embankments, have allowed engineers to successfully widen the M1 motorway in the UK.

Over the 50km length of the work (25km northbound, 25km southbound) on a busy section of the motorway near the city of Nottingham, a total of 48km of slopes had to be modified, split roughly between cutting and embankment.

The 1441 UK Highways Agency requirements for the work meant that wholesale widening of the corridor was not possible: the road's overall footprint could not be extended. Land clearance within it had to be minimised and balanced relative to the needs of the agreed environmental impact statement [EIS].

This included building within the constraints of a no-contraflow construction and limited width of widening; providing a solution that would maximise replanting; ensuring topsoil retention and a vegetated finish on steep slopes; and minimising waste and offsite disposal/importation of materials.

Consulting engineers Gifford WSP was designer for MVM, a joint venture partnership between Morgan Est, Vinci and Sir Robert McAlpine. The team developed a hierarchy of solutions to allow maximum utilisation of the existing motorway corridor, including the re-profiling of cuts and embankments to accommodate the required, eight-lane plus hard-shoulder motorway.

Construction solutions were applied based on the geometry at each location: some locations were identified as being of higher environmental sensitivity, and consequently land clearance had to be kept to an absolute minimum.

At each location, solutions were cost assessed and an appropriate treatment adopted. Target cost solutions were tested against EIS criteria, with a degree of flexibility allowed to achieve an overall balance.

In cuttings, the sequence was general earthworks: low-height gabion retaining structures and then soil nailing/geotextile erosion protection matting.
On embankments, the sequence involved general earthworks, steep earthworks using selected, high-strength granular fill and topsoil with erosion protection materials. Finally, there were hard retaining structures.

Andy Rose, technical director geotechnics at Gifford, explained: "Close interaction between highways/structures/environmental specialists and geotechnical designers was essential to provide the optimum solutions and, at an early stage, specialist geotechnical suppliers were engaged.

"When extending a cut, removal of the toe of the slope generally means that the overall slope becomes less stable. The steepened slope may be stable in the short-term but it will require strengthening to ensure long-term stability." Rapid establishment of vegetative cover to the newly formed slopes was also a priority for the construction team." Geotechnical and erosion control advice on a significant proportion of the works was provided by specialists 1589 Maccaferri.

Initially, its gabion retaining structures and rock-fall containment netting were supplied but, as work progressed, a wider range of systems from the company were introduced including soil retention, erosion protection and other 'soft' slope stabilisation systems.

A steepened slope solution using soft measures is approximately one-sixth the cost of a traditional, 'hard' retaining wall solution such as masonry or in situ concrete walls, and offers far greater flexibility to adapt to site conditions, so the designers were keen to exploit the benefits of these measures.

The Maccaferri erosion protection systems, Enkamat and Biomac, were used to overlay exposed cut faces of typically of 2-3m height and in places up to 6m high. Some 38,000m² was installed in combination with over 7,000 soil nails, bored into the retained slope to strengthen it and anchor the material in place.

Enkamat is a non-woven geotextile matting of thick polyamide filaments which is designed to be secured over the vulnerable slope face to prevent surface erosion by run-off. Over 90% of the volume of the mat is voids and is therefore available for soil filling, maximising the potential for establishing vegetation on the slope.

Biomac is a biodegradable erosion protection blanket made from natural fibres such as coir or a coir-straw mix. When secured to the soil slope, it offers immediate erosion protection to the soil during the establishment phase of seeding and planting.

The further problem of how to retain topsoil on the steepened slopes was addressed with the application of an expanding cellular soil containment system, also from Maccaferri, called Armater, which creates a continuous grid of 100mm deep pockets that holds topsoil. When seeded, root growth binds the soil layer together and to the underlying materials, preventing it from slumping down the steeply sloping site.

On the steepened embankment slopes, at certain locations up to 8m in height with the steepened and widened sections representing between 30-50% of this height, some 35,000m² of topsoil required such assisted retention: over the project the volume of total excavation exceeded 320,000m².

For more information on companies in this article

Related Content

  • India’s new expressway link
    April 12, 2021
    Accelerated road construction methods are being used to build an expressway link in India, setting records along the way
  • PERI’s balancing act at the Harpe Bru Bridge in Norway
    May 24, 2016
    Plans for the European Route E6 expansion in Norway include the 320m-long Harpe Bru Bridge over the Gudbrandsdalen Lågen River, at Sør-Fron in Oppland province. For the superstructure, PERI civil engineering technology experts developed a balanced cantilevered solution based on the VARIOKIT Engineering Construction Kit. Statens vegvesen, Norway’s agency for public road building, selected an extradosed cable-stayed bridge design – the first such bridge in Norway. It combines the load-bearing behaviour
  • New Midtown Tunnel open in Virginia
    January 30, 2017
    A project to construct the second Midtown Tunnel link in the US state of Virginia alongside the original connection has taken an important step forward – Mike Woof writes Commuters in the US state of Virginia will be pleased that the new Midtown Tunnel is now open to traffic, as it will help to boost capacity and cut congestion on the busy US 58 route connecting Norfolk and Portsmouth. The 1.13km tunnel link has been built to link with the interchange at Brambleton Avenue and Hampton Boulevard in Norfolk
  • Fuel savings from road surfaces
    May 23, 2012
    A new study by civil engineers at MIT shows that using stiffer pavements on America’s roads could reduce vehicle fuel consumption by as much as 3%, that could add up to US$15.6 billion at today’s oil prices. This would result in an accompanying annual decrease in CO2 emissions of 46.5 million tonnes. The study, released in a recent peer-reviewed report, is the first to use mathematical modelling rather than roadway experiments to look at the effect of pavement deflection on vehicle fuel consumption across t