Skip to main content

'Soft' option gets results

Soft engineering techniques, used to prevent soil erosion and stabilise steep cuts and embankments, have allowed engineers to successfully widen the M1 motorway in the UK. Over the 50km length of the work (25km northbound, 25km southbound) on a busy section of the motorway near the city of Nottingham, a total of 48km of slopes had to be modified, split roughly between cutting and embankment. The UK Highways Agency requirements for the work meant that wholesale widening of the corridor was not possible: the
February 8, 2012 Read time: 4 mins
Soft engineering techniques, used to prevent soil erosion and stabilise steep cuts and embankments, have allowed engineers to successfully widen the M1 motorway in the UK.

Over the 50km length of the work (25km northbound, 25km southbound) on a busy section of the motorway near the city of Nottingham, a total of 48km of slopes had to be modified, split roughly between cutting and embankment.

The 1441 UK Highways Agency requirements for the work meant that wholesale widening of the corridor was not possible: the road's overall footprint could not be extended. Land clearance within it had to be minimised and balanced relative to the needs of the agreed environmental impact statement [EIS].

This included building within the constraints of a no-contraflow construction and limited width of widening; providing a solution that would maximise replanting; ensuring topsoil retention and a vegetated finish on steep slopes; and minimising waste and offsite disposal/importation of materials.

Consulting engineers Gifford WSP was designer for MVM, a joint venture partnership between Morgan Est, Vinci and Sir Robert McAlpine. The team developed a hierarchy of solutions to allow maximum utilisation of the existing motorway corridor, including the re-profiling of cuts and embankments to accommodate the required, eight-lane plus hard-shoulder motorway.

Construction solutions were applied based on the geometry at each location: some locations were identified as being of higher environmental sensitivity, and consequently land clearance had to be kept to an absolute minimum.

At each location, solutions were cost assessed and an appropriate treatment adopted. Target cost solutions were tested against EIS criteria, with a degree of flexibility allowed to achieve an overall balance.

In cuttings, the sequence was general earthworks: low-height gabion retaining structures and then soil nailing/geotextile erosion protection matting.
On embankments, the sequence involved general earthworks, steep earthworks using selected, high-strength granular fill and topsoil with erosion protection materials. Finally, there were hard retaining structures.

Andy Rose, technical director geotechnics at Gifford, explained: "Close interaction between highways/structures/environmental specialists and geotechnical designers was essential to provide the optimum solutions and, at an early stage, specialist geotechnical suppliers were engaged.

"When extending a cut, removal of the toe of the slope generally means that the overall slope becomes less stable. The steepened slope may be stable in the short-term but it will require strengthening to ensure long-term stability." Rapid establishment of vegetative cover to the newly formed slopes was also a priority for the construction team." Geotechnical and erosion control advice on a significant proportion of the works was provided by specialists 1589 Maccaferri.

Initially, its gabion retaining structures and rock-fall containment netting were supplied but, as work progressed, a wider range of systems from the company were introduced including soil retention, erosion protection and other 'soft' slope stabilisation systems.

A steepened slope solution using soft measures is approximately one-sixth the cost of a traditional, 'hard' retaining wall solution such as masonry or in situ concrete walls, and offers far greater flexibility to adapt to site conditions, so the designers were keen to exploit the benefits of these measures.

The Maccaferri erosion protection systems, Enkamat and Biomac, were used to overlay exposed cut faces of typically of 2-3m height and in places up to 6m high. Some 38,000m² was installed in combination with over 7,000 soil nails, bored into the retained slope to strengthen it and anchor the material in place.

Enkamat is a non-woven geotextile matting of thick polyamide filaments which is designed to be secured over the vulnerable slope face to prevent surface erosion by run-off. Over 90% of the volume of the mat is voids and is therefore available for soil filling, maximising the potential for establishing vegetation on the slope.

Biomac is a biodegradable erosion protection blanket made from natural fibres such as coir or a coir-straw mix. When secured to the soil slope, it offers immediate erosion protection to the soil during the establishment phase of seeding and planting.

The further problem of how to retain topsoil on the steepened slopes was addressed with the application of an expanding cellular soil containment system, also from Maccaferri, called Armater, which creates a continuous grid of 100mm deep pockets that holds topsoil. When seeded, root growth binds the soil layer together and to the underlying materials, preventing it from slumping down the steeply sloping site.

On the steepened embankment slopes, at certain locations up to 8m in height with the steepened and widened sections representing between 30-50% of this height, some 35,000m² of topsoil required such assisted retention: over the project the volume of total excavation exceeded 320,000m².

For more information on companies in this article

Related Content

  • Seal of approval for Sika
    June 22, 2012
    Skikaflex Construction by UK-based Sika was chosen by Skanska Balfour Beatty Joint Venture to seal movement joints during the widening of one of Europe’s busiest motorways. The M25, also known as the London Orbital, handles around 200,000 vehicles every day on its busiest sections. Its widening between junctions 27 and 30 is said to be delivering much needed extra capacity to tackle congestion and improve journey times.
  • Peru’s Matarani – Punta de Bonbon Highway
    January 5, 2016
    A major new highway project in Peru will improve connectivity for the Arequipa region - Mauro Nogarin writes Peru’s Matarani-Bonbon road project is an important route and forms part of the Camana - Dv Quilca - Ilo - Tacna highway project. The road stretches through several provinces in the Arequipa region. The deadline for completing the work is 720 days after January 2015, and it is scheduled to be completed by December 2016. Progress has been good and as of July 2015, it was 80% completed. The main
  • Historic promenade given a facelift
    July 17, 2012
    In the UK, Foster Contracting was part of the team that carried out road improvements to the main route along the historic promenade of the seaside town Great Yarmouth, in eastern England. The harshness of the sea environment coupled with traffic loading caused the road surface to deteriorate, leading to brittle cracking of the thin surface course and also reflective cracking from overlain service trenches and patches. The town centre was already undergoing a major regeneration and as part of this scheme, i
  • Wirtgen milling machines and soil stabilisers land in Sardina
    July 26, 2016
    Wirtgen cold milling machines recently demonstrated their ability on runway rehabilitation work at Alghero-Fertilia Airport in Sardinia. Alghero-Fertilia Airport, about 8km northwest of Alghero, is one of three commercial airports on the Italian island. Built as a military airport in the late 1930s, Alghero-Fertilia still occasionally serves this purpose today. It is also a major hub for low-cost carriers that ferry many of the annual 1.7 million passengers who pass through the airport. Summer tourist mo