Skip to main content

Versatile pavement re-texturing machine

AN INNOVATIVE wet steel shotblasting machine developed by pavement re-texturing specialist Klaruw is now being tested in the UK.
February 6, 2012 Read time: 3 mins
AN INNOVATIVE wet steel shotblasting machine developed by pavement re-texturing specialist 2311 Klaruw is now being tested in the UK. The prototype machine is designed for wet application shot blasting, a technique intended to improve roadway macro-texture and micro-texture to safe levels. The machine was developed by Dutch firm Klaruw Tilburg and features computercontrolled Macrotex (MAT) shot-blasting. This equipment is said to offer advantages in process control, versatility of treatment and production rate over conventional shotblasting machines. As it uses wet steel shot, it allows retexturing to be carried out even in heavy rain, unlike conventional dry methods.

The MAT process has been developed to improve the macro-texture of most natural aggregate surfaces, a technique that helps surface water to escape and prevent aqua-planing. Although the process primarily works on macro-texture, improvement in micro-texture is a secondary benefit and this boosts surface friction and provides wet weather skid resistance.

Two separate night-time trials were carried out on sections of concrete, hot rolled asphalt (HRA) and thin surfacing on the M56 near Chester. 2312 North Wales Trunk Road Agency (NWRTA) is also looking at results from HRA (hot rolled asphalt) and thin surfacing after trials on the A55 North Wales Coast Road.

According to NWTRA, the MAT shot blasting process has provided a rapid, single pass and non-weather dependent process for the improvement of the macro-texture of surface courses, with minimal disruption to the road network.

A-one+ (a highway services joint venture company formed between 2320 Halcrow Group Limited, 184 Colas and 2319 Costain) made similar comments about the benefits of improved water dispersion and wet weather skid resistance using this technology. Both agencies are now assessing the results of the trials, with early indications that both saw promising improvements. Klaruw says it is confident that results will back up the findings of trials in Holland where significant improvements in macrotexture have been observed on asphaltic concrete runways.

The MAT shot-blasting process has also been proven effective for removing bitumen residues left on newly laid porous asphalt to prevent socalled 'bitu-planing', and for cleaning the cementitious film off new concrete. The machine will be undergoing further tests on HRA, a surfacing system prevalent in the UK.

Klaruw believes that macrotexture rejuvenation using the MAT machine is set to provide a versatile, cost-effective and highly sustainable solution for addressing aqua-planing and wet skid issues. By reworking existing surfaces, it extends service life of structurally sound roads by several years before more costly, disruptive overlay or inlay is needed. The MAT machine shot blasts and cleans the road surface as one integral unit in one pass, simplifying traffic management and leaving treated sections ready for use immediately. The technique requires no aftertreatment or curing time, and leaves no residual deposits.
MAT retexturing also has significant environmental benefits. It applies no new material, produces minimal waste, and recycles water and shot used in the process, reducing reliance on new materials and landfill.

The main MAT shot-blast vehicle incorporates a steel shot storage and recycling unit, a rear tank for waste water and debris, with the shot-blasting mechanism housed in between.

Used shot is reprocessed in the shot storage unit while the remaining water-borne material is conveyed to a closely coupled, dedicated water cleaning machine (WCM) behind the MAT unit. This cleans and recycles water for re-use in the shot-blasting treatment, while processing residues to an almost dry condition for disposal.

The new MAT unit can treat widths ranging from 24-190cm.

Working speed is variable, ranging from 3m/minute for heavy duty retexturing, up to 100m/minute for light cleaning.

Depending on pavement type and condition, and application requirements, the machine will generally treat around 1,300- 3000m2 of pavement/hour, or from 3-7km/day.

For more information on companies in this article

Related Content

  • Researchers trial 3D printing for both concrete and asphalt roads
    February 27, 2019
    Automated road repairs, using 3D printing, could save money and vastly reduce disruption, and researchers are already showing it’s possible - Kristina Smith reports It’s the middle of the night, and in the street below a team is busy carrying out repairs to the road surface. But there isn’t a human in sight. A road repair drone has landed at the site of a crack and a 3D asphalt printer is now busy filling in that crack. A group of traffic cone drones have positioned themselves around the repair location
  • Recycled porous asphalt trial in Netherlands
    May 15, 2017
    An innovative reuse of porous asphalt is being tested on secondary roads in the Netherlands. The promising LE2AP European Life demonstration project involves test sections of durable, silent asphalt on roads in the Netherlands. LE2AP stands for Low Emission 2 Asphalt Pavement, with the 2 indicating reduced emissions for both CO2 and sound. BAM recently installed two test sections of a novel surface material in collaboration with the Dutch provinces of Noord-Brabant and Gelderland. This asphalt road surface
  • Recycled porous asphalt trial in Netherlands
    May 15, 2017
    An innovative reuse of porous asphalt is being tested on secondary roads in the Netherlands. The promising LE2AP European Life demonstration project involves test sections of durable, silent asphalt on roads in the Netherlands. LE2AP stands for Low Emission 2 Asphalt Pavement, with the 2 indicating reduced emissions for both CO2 and sound. BAM recently installed two test sections of a novel surface material in collaboration with the Dutch provinces of Noord-Brabant and Gelderland. This asphalt road surface
  • Longer lasting road surfaces with advanced asphalt paving
    February 20, 2012
    Contractors face an array of sophisticated paving technologies, Mike Woof reports. Asphalt paving technology continues to advance as manufacturers develop more efficient and reliable equipment. Paving techniques are also improving, while new polymer modified bitumen materials and recycling methodologies further increase the range of road surfacing options available to the client and contractor.