Skip to main content

Polyfunctional Polymeric Systems (PPS) help stressed roads

Increases in mobility and loads to which roadways are subjected has led, over the past decade, to new technologies for increasing the life of highly stressed pavements. Alongside traditional layers in asphalt concrete with normal or modified binders, there are new technologies which make it possible to produce high performance bituminous layers through the use of polyfunctional polymeric systems (PPSs).
May 12, 2016 Read time: 3 mins

Increases in mobility and loads to which roadways are subjected has led, over the past decade, to new technologies for increasing the life of highly stressed pavements.

Alongside traditional layers in asphalt concrete with normal or modified binders, there are new technologies which make it possible to produce high performance bituminous layers through the use of polyfunctional polymeric systems (PPSs).

These systems are multifunctional compounds formed of fibers and polymers joined in a single pellet.
 
Resulting from several years of research by 252 Iterchimica, the formulation has been designed and adapted to meet production needs and performance targets determined during the planning stage.

Polyfunctional Polymeric Systems (PPSs) are made from a compound of fibers of differing nature, plastomeric or elastomeric polymers, paraffinic compounds, liquid components and other additives (depending on the type and purpose of the PPS). They are manufactured in pellets to reduce dosing problems.

Each type of fiber selected for the compound has a specific behavior.

Traditional fibers serve to thicken and stabilise the mastic - filler plus bitumen. They are usually made from micro-fibers of cellulose origin.

Multipurpose fibers consist of various types of cellulose, mineral and synthetic micro-fibers. In addition to the functions of traditional fibers, they have a structuring effect that ensures greater resistance to fatigue and complex modulus.

PPSs act simultaneously on several properties, causing a physical and chemical modification in bituminous mixtures. In particular, they acting on the characteristics of the bitumen, for example penetration, softening point and viscosity, and create a micro-structural reinforcement of the bitumen film.

Another feature is the method of use. Pellets are used in the production phase of asphalt concrete, allowing the modification of the mixture directly inside the mixer.

This technology is extremely versatile and can be used even in poorly served geographically areas. It has also, in the past year, been particularly successful in various pavements, especially in Italy where it has been used for high modulus binder, draining and wearing layers. It has also combined with other types of additives with the function of uniting the advantages of warm mix to those related to the use of reclaimed asphalt pavement (RAP).

In particular, they are being widely used in split mastic asphalt (SMA) and in highly modified wearing courses. These bituminous mixtures, in addition to having a granulometric grading as reference, require high percentages of bitumen and high performance levels achieved through the use of polymers.

On the other hand, the use of fibers - mostly composed of cellulose - is necessary to prevent the percolation of the bitumen, in addition to having a stabilising and structuring effect. In particular, this technology has also been used for the construction of the A53 (Pavia-Bereguardo) motorway in Italy. This project involved the expansion of the area around the city of Bereguardo, at the A7 Milano-Genova motorway, improving the western ring road of Pavia, for about 9.5km. Work includes the modification of the road due to heavy traffic. Completion is scheduled for mid-2016.

More specifically, the new project includes both the expansion of the existing pavement and the construction of the roadway’s pavement structure:

  • Mix stabilised in situ with recycled materials, polypropylene fibrillated fiber-reinforced;
  • Base binder, high modulus with PPS (BBHM) = 9 cm;
  • High-modulus wear layer with PPS (UHM) = 9 cm.

For more information on companies in this article

Related Content

  • Managing resource to create more resilient roads
    June 22, 2018
    As pressure increases on the cost and availability of resources, investment in recycling technology continues to grow across the road building industry. To meet its full potential, a greater understanding is needed of material performance to allow the building of more resilient, sustainable and economic networks - *David Smith explains. Over the past decade, the road construction industry has made significant strides in recycling. Reducing the reliance on virgin materials is of environmental importance,
  • Customised mill cuts costs
    October 14, 2015
    A special customised cold planer has saved costs and time for a US contractor. In the US, New York State Highway 243 has benefited from an innovative use of novel milling technology. This 17.75km east–west state highway is located in the Southern Tier of New York and has been carrying traffic since the 1930 renumbering of state highways in the state. The NY 243 has been a utilitarian divided highway that begins at an intersection with NY 98 in the town of Freedom and proceeds south-eastward across mostly ru
  • Advances in asphalt plant production
    November 27, 2012
    Leading asphalt plant manufacturers have recently unveiled their latest products aimed at customers looking for significant efficiency gains through the use of durable and lasting technology. Guy Woodford looks at some of the new batch Benninghoven showcased a wide variety of its new and innovative asphalt plants and individual plant components during its week-long Open Days event last month at the German firm’s HQ in Mülheim. Launched earlier this year, the MMX80 Continuous Asphalt Plant is capable of prod
  • BOMAG: road construction with warm mix asphalt
    July 3, 2024
    When it comes to paving and compacting warm mix asphalt (WMA), BOMAG rollers and pavers really come into their own. Well prepared for what’s to come: road construction with warm mix asphalt.