Skip to main content

Polyfunctional Polymeric Systems (PPS) help stressed roads

Increases in mobility and loads to which roadways are subjected has led, over the past decade, to new technologies for increasing the life of highly stressed pavements. Alongside traditional layers in asphalt concrete with normal or modified binders, there are new technologies which make it possible to produce high performance bituminous layers through the use of polyfunctional polymeric systems (PPSs).
May 12, 2016 Read time: 3 mins

Increases in mobility and loads to which roadways are subjected has led, over the past decade, to new technologies for increasing the life of highly stressed pavements.

Alongside traditional layers in asphalt concrete with normal or modified binders, there are new technologies which make it possible to produce high performance bituminous layers through the use of polyfunctional polymeric systems (PPSs).

These systems are multifunctional compounds formed of fibers and polymers joined in a single pellet.
 
Resulting from several years of research by 252 Iterchimica, the formulation has been designed and adapted to meet production needs and performance targets determined during the planning stage.

Polyfunctional Polymeric Systems (PPSs) are made from a compound of fibers of differing nature, plastomeric or elastomeric polymers, paraffinic compounds, liquid components and other additives (depending on the type and purpose of the PPS). They are manufactured in pellets to reduce dosing problems.

Each type of fiber selected for the compound has a specific behavior.

Traditional fibers serve to thicken and stabilise the mastic - filler plus bitumen. They are usually made from micro-fibers of cellulose origin.

Multipurpose fibers consist of various types of cellulose, mineral and synthetic micro-fibers. In addition to the functions of traditional fibers, they have a structuring effect that ensures greater resistance to fatigue and complex modulus.

PPSs act simultaneously on several properties, causing a physical and chemical modification in bituminous mixtures. In particular, they acting on the characteristics of the bitumen, for example penetration, softening point and viscosity, and create a micro-structural reinforcement of the bitumen film.

Another feature is the method of use. Pellets are used in the production phase of asphalt concrete, allowing the modification of the mixture directly inside the mixer.

This technology is extremely versatile and can be used even in poorly served geographically areas. It has also, in the past year, been particularly successful in various pavements, especially in Italy where it has been used for high modulus binder, draining and wearing layers. It has also combined with other types of additives with the function of uniting the advantages of warm mix to those related to the use of reclaimed asphalt pavement (RAP).

In particular, they are being widely used in split mastic asphalt (SMA) and in highly modified wearing courses. These bituminous mixtures, in addition to having a granulometric grading as reference, require high percentages of bitumen and high performance levels achieved through the use of polymers.

On the other hand, the use of fibers - mostly composed of cellulose - is necessary to prevent the percolation of the bitumen, in addition to having a stabilising and structuring effect. In particular, this technology has also been used for the construction of the A53 (Pavia-Bereguardo) motorway in Italy. This project involved the expansion of the area around the city of Bereguardo, at the A7 Milano-Genova motorway, improving the western ring road of Pavia, for about 9.5km. Work includes the modification of the road due to heavy traffic. Completion is scheduled for mid-2016.

More specifically, the new project includes both the expansion of the existing pavement and the construction of the roadway’s pavement structure:

  • Mix stabilised in situ with recycled materials, polypropylene fibrillated fiber-reinforced;
  • Base binder, high modulus with PPS (BBHM) = 9 cm;
  • High-modulus wear layer with PPS (UHM) = 9 cm.

For more information on companies in this article

Related Content

  • Spanish contractor Sorigué has the edge with VÖGELE SprayJet
    March 21, 2016
    Spanish contractor Sorigué, the first to use the SUPER 1800-3i SprayJet from Vögele, has pioneered paving thin overlays and the development of new mixes. The company won the contract for rehabilitating the surface course of the 3km-long dam, 10m-wide promenade in the Catalonian port city of Tarragona. Sorigué’s idea was to overlay the existing surfacing with a thin layer applied to a spray seal of polymer-modified bitumen. The spray seal prevents water penetrating inside the structure – a major advant
  • New testing equipment and services
    April 21, 2016
    This month’s round-up looks at new equipment from a number of manufacturers and a new bitumen testing service in the UK from global player Intertek - Kristina Smith reports CONTROLS GROUP has unveiled new machines from each of its specialist divisions, including a new triaxial tester from its soil mechanics arm Wykham Farrance; an E-modulus tester from its concrete testing division; and an asphalt binder analyser from PAVELAB SYSTEMS, its asphalt division. TRITECH is the result of 50 years of developm
  • New additive boosts rubber-modified asphalt
    September 10, 2014
    Lehigh Technologies, which produces micronized rubber powders, has joined forces with additive specialist Rheopave to come up with a system which will improve the performance of asphalt, while reducing the cost compared to standard polymer modified asphalts. Rheopave had developed its X10 additive, a blend of reactive polymers and other elements, to work with Lehigh’s MicroDyne micronized rubber powder. It overcomes two problems currently experienced with rubber-modified asphalt, according to Lehigh’s direc
  • Cold recycling helps rebuild of Brazil’s Ayrton Senna highway
    September 28, 2015
    Brazil’s Ayrton Senna Highway has been rebuilt using cold recycling. Brazil’s SP-070 is also known as the Ayrton Senna Highway and is a major highway in the country, carrying heavy traffic volumes. For its rebuild, the time-saving, cost-efficient and eco-friendly benefits of the cold recycling process have been put to the test. The SP-070 provides a key transport link between São Paulo and Campos do Jordão, Vale do Paraíba and Rio de Janeiro, as well as being the main access route to Guarulhos Interna