Skip to main content

Polyfunctional Polymeric Systems (PPS) help stressed roads

Increases in mobility and loads to which roadways are subjected has led, over the past decade, to new technologies for increasing the life of highly stressed pavements. Alongside traditional layers in asphalt concrete with normal or modified binders, there are new technologies which make it possible to produce high performance bituminous layers through the use of polyfunctional polymeric systems (PPSs).
May 12, 2016 Read time: 3 mins

Increases in mobility and loads to which roadways are subjected has led, over the past decade, to new technologies for increasing the life of highly stressed pavements.

Alongside traditional layers in asphalt concrete with normal or modified binders, there are new technologies which make it possible to produce high performance bituminous layers through the use of polyfunctional polymeric systems (PPSs).

These systems are multifunctional compounds formed of fibers and polymers joined in a single pellet.
 
Resulting from several years of research by 252 Iterchimica, the formulation has been designed and adapted to meet production needs and performance targets determined during the planning stage.

Polyfunctional Polymeric Systems (PPSs) are made from a compound of fibers of differing nature, plastomeric or elastomeric polymers, paraffinic compounds, liquid components and other additives (depending on the type and purpose of the PPS). They are manufactured in pellets to reduce dosing problems.

Each type of fiber selected for the compound has a specific behavior.

Traditional fibers serve to thicken and stabilise the mastic - filler plus bitumen. They are usually made from micro-fibers of cellulose origin.

Multipurpose fibers consist of various types of cellulose, mineral and synthetic micro-fibers. In addition to the functions of traditional fibers, they have a structuring effect that ensures greater resistance to fatigue and complex modulus.

PPSs act simultaneously on several properties, causing a physical and chemical modification in bituminous mixtures. In particular, they acting on the characteristics of the bitumen, for example penetration, softening point and viscosity, and create a micro-structural reinforcement of the bitumen film.

Another feature is the method of use. Pellets are used in the production phase of asphalt concrete, allowing the modification of the mixture directly inside the mixer.

This technology is extremely versatile and can be used even in poorly served geographically areas. It has also, in the past year, been particularly successful in various pavements, especially in Italy where it has been used for high modulus binder, draining and wearing layers. It has also combined with other types of additives with the function of uniting the advantages of warm mix to those related to the use of reclaimed asphalt pavement (RAP).

In particular, they are being widely used in split mastic asphalt (SMA) and in highly modified wearing courses. These bituminous mixtures, in addition to having a granulometric grading as reference, require high percentages of bitumen and high performance levels achieved through the use of polymers.

On the other hand, the use of fibers - mostly composed of cellulose - is necessary to prevent the percolation of the bitumen, in addition to having a stabilising and structuring effect. In particular, this technology has also been used for the construction of the A53 (Pavia-Bereguardo) motorway in Italy. This project involved the expansion of the area around the city of Bereguardo, at the A7 Milano-Genova motorway, improving the western ring road of Pavia, for about 9.5km. Work includes the modification of the road due to heavy traffic. Completion is scheduled for mid-2016.

More specifically, the new project includes both the expansion of the existing pavement and the construction of the roadway’s pavement structure:

  • Mix stabilised in situ with recycled materials, polypropylene fibrillated fiber-reinforced;
  • Base binder, high modulus with PPS (BBHM) = 9 cm;
  • High-modulus wear layer with PPS (UHM) = 9 cm.

For more information on companies in this article

Related Content

  • Building green with nanotechnology
    June 23, 2021
    The results are out: Iterchimica and Directa Plus’ GiPave combines recycled plastic and nanotechnology to improve pavement performance across the board
  • Benefits of bitumen technology research
    March 15, 2012
    Bitumen technology is benefiting from years of research and development - Kristina Smith. On a 2.7km loop of road in Auburn in Alabama, US, a lorry driver drives his triple-truck round and round. During his eight-hour shift, he will have covered 544km, with another driver waiting to take over from him for the next shift. Their mission is to seriously damage the road. This is the National Center for Asphalt Technology (NCAT), where sponsors from states and private companies pay to test out new materials and
  • Bitumen balance in RAP
    November 29, 2012
    *Bitumen from recycled asphalt can be rejuvenated using additives, according to Iterchimica The use of reclaimed asphalt pavement (RAP) is common in many countries. However, the aged bitumen from RAP has a lower penetration and is more viscous than when first mixed. This reclaimed bitumen is generally balanced by the addition of fresh binder that is softer than those typically used to produce hot mixes. But balancing penetration and softening point or viscosity will not deliver bitumen identical to the orig
  • How bitumen technology is helping roads do more
    November 14, 2016
    From lightening tunnels to keeping racing cars on tracks to preventing ice from forming, bitumen technology is helping roads do more - Kristina Smith reports If you think bitumen is just bitumen, useful for sticking lumps of aggregate together, it’s time to think again. The ever-widening and ever-more-sophisticated range of technologies and additives available means that we can ask our road surfaces to do more than ever.