Skip to main content

Polish road strengthened by Tensar

Consultants have specified Tensar techology in the rebuilding of a deteriorating Polish highway in order to meet current standards. The use of Tensar geogrids enabled consultants Drotest and Dro-konsult Warsaw to create a stable asphalt pavement quicker and more economically than using conventional construction methods, says Tensar. The 40km long road, which connects Bartoszyce and Ketrzyhn, had exceeded its design life and clearly showed its structural weakness with bad rutting, extensive fatigue crackin
July 31, 2012 Read time: 2 mins
Consultants have specified 340 Tensar techology in the rebuilding of a deteriorating Polish highway in order to meet current standards.

The use of Tensar geogrids enabled consultants 1438 Drotest and Dro-konsult Warsaw to create a stable asphalt pavement quicker and more economically than using conventional construction methods, says Tensar.

The 40km long road, which connects Bartoszyce and Ketrzyhn, had exceeded its design life and clearly showed its structural weakness with bad rutting, extensive fatigue cracking and surface deformation. The 6m wide carriageway was carried on a narrow fill embankment with minimum shoulders and flanked by deep ditches.

Conventional techniques of installing a thick pavement structure to improve the road bearing performance would have required widening the embankment to carry the additional construction. This was an expensive option and not economically possible.

Instead, the Tensar technical design team proposed the installation of a lean concrete base carrying Tensar geogrid composite reinforced asphalt layers. Over the concrete, the contractors PBDiM Minsk Mazowiecki laid a bituminous bond coat, and rolled out the Tensar ARG composite (geogrid bonded to a paving fabric) which was then brushed flat.

Over the concrete road base they laid a new binder course followed by wearing layers of asphalt. The function of the Tensar geogrid composite was to restrict any shrinkage cracking from the concrete layer from reflecting into the asphalt. In addition, its load bearing capability will provide fatigue resistance for the asphalt layers.

For more information on companies in this article

Related Content

  • Paving a new racing circuit
    February 2, 2022
    The use of reduced temperature asphalt in a road construction project in Germany has helped to lower emissions
  • Tarmac’s low temperature Ultilow asphalt mix used in Edinburgh
    November 28, 2016
    UK construction firm and asphalt producer Tarmac reports that its Ultilow low temperature asphalt helped a Scottish client keep on top of its sustainability targets.
  • Longer lasting road surfaces with advanced asphalt paving
    February 20, 2012
    Contractors face an array of sophisticated paving technologies, Mike Woof reports. Asphalt paving technology continues to advance as manufacturers develop more efficient and reliable equipment. Paving techniques are also improving, while new polymer modified bitumen materials and recycling methodologies further increase the range of road surfacing options available to the client and contractor.
  • New methods for non-destructive concrete testing
    August 29, 2017
    How best is it possible to assess the state of concrete in a road pavement, bridge deck or tunnel wall? One of the most reliable ways is to take a core of concrete from the structure to analyse and test in the laboratory. One downside to this method is that doing the test creates weak points in the structure that must then be repaired. Another is that the frequency of such cores cannot be too great – so it is possible that some problem areas will be missed. New technologies from the world of geospatial eng