Skip to main content

Polish road strengthened by Tensar

Consultants have specified Tensar techology in the rebuilding of a deteriorating Polish highway in order to meet current standards. The use of Tensar geogrids enabled consultants Drotest and Dro-konsult Warsaw to create a stable asphalt pavement quicker and more economically than using conventional construction methods, says Tensar. The 40km long road, which connects Bartoszyce and Ketrzyhn, had exceeded its design life and clearly showed its structural weakness with bad rutting, extensive fatigue crackin
July 31, 2012 Read time: 2 mins
Consultants have specified 340 Tensar techology in the rebuilding of a deteriorating Polish highway in order to meet current standards.

The use of Tensar geogrids enabled consultants 1438 Drotest and Dro-konsult Warsaw to create a stable asphalt pavement quicker and more economically than using conventional construction methods, says Tensar.

The 40km long road, which connects Bartoszyce and Ketrzyhn, had exceeded its design life and clearly showed its structural weakness with bad rutting, extensive fatigue cracking and surface deformation. The 6m wide carriageway was carried on a narrow fill embankment with minimum shoulders and flanked by deep ditches.

Conventional techniques of installing a thick pavement structure to improve the road bearing performance would have required widening the embankment to carry the additional construction. This was an expensive option and not economically possible.

Instead, the Tensar technical design team proposed the installation of a lean concrete base carrying Tensar geogrid composite reinforced asphalt layers. Over the concrete, the contractors PBDiM Minsk Mazowiecki laid a bituminous bond coat, and rolled out the Tensar ARG composite (geogrid bonded to a paving fabric) which was then brushed flat.

Over the concrete road base they laid a new binder course followed by wearing layers of asphalt. The function of the Tensar geogrid composite was to restrict any shrinkage cracking from the concrete layer from reflecting into the asphalt. In addition, its load bearing capability will provide fatigue resistance for the asphalt layers.

For more information on companies in this article

Related Content

  • Improving a key route through Florida
    November 9, 2015
    Upgrading a key route through Florida – novel construction techniques are helping widen a road in difficult geological conditions – Lucio Garofalo reports. A major road widening project underway in Florida is due for completion soon. The work will improve an important section of road, reducing congestion at peak period and cutting travel times for drivers. The US 331/SR83 highway runs for some 79km and provides an important link in Florida’s Panhandle area, as it connects with Route 98.
  • Building green with nanotechnology
    June 23, 2021
    The results are out: Iterchimica and Directa Plus’ GiPave combines recycled plastic and nanotechnology to improve pavement performance across the board
  • Durability is crucial while warm mix technology can help disaster recovery
    February 21, 2013
    Why durability is crucial for both emerging and developed economies, and how warm mix technology can help disaster recovery - Kristina Smith reports. When CORE Construction, a 100% owned Ghanaian company, started working on road construction projects five years ago, it was difficult to source the right bituminous mixes. “In the past, most construction firms had a number of challenges when it came to bituminous works, since the local capacity was not well-developed,” said CORE CEO Frank Lartey. CORE’s soluti
  • Steel sealed on Stonecutters Bridge
    February 6, 2012
    The stone mastic asphalt surface being laid on the bridge deck. The Stonecutters Bridge in Hong Kong, the second longest spanning cable stayed bridge in the world, is a dual three-lane crossing of the Rambler Channel. It utilises 33,500tonnes of structural steel in the bridge deck; 32,000m3 of concrete in the towers and 65 steel deck units relying on 224 cables. Effectively protecting the megastructure's deck from the weather extremes (monsoon rains and extreme heat in the summer) and the high levels of tra