Skip to main content

Flexible resin speeds asphalt surface repair

Stirling Lloyd is using innovative micro-trenching technology during a £1.1million (US$1.72million) project to improve Internet infrastructure on the Shetland Isles off the north-east Scottish coast.
March 15, 2012 Read time: 2 mins
2314 Stirling Lloyd is using innovative micro-trenching technology during a £1.1million (US$1.72million) project to improve Internet infrastructure on the Shetland Isles off the north-east Scottish coast.

Fibre optic cables were fitted in a micro-trench 20mm wide and 150mm deep following road excavation, before the company’s Safetrack Crack Infill (SCI) system was used to reinstate the road surface for less closure delays.

Initiated and funded by Shetland Island Councils (SIC's) and the European Regional Development Fund (ERDF), the project saw Stirling Lloyd’s specialist contractor Tulloch Developments cut a micro-trench into the road surface which connects junction boxes at approximately 1km intervals. Once the small fibre optic bundle had been installed, the HAPAS-approved SCI’s free-flowing, flexible resin was used to infill the trench, while supporting it on both sides.

Stirling Lloyd claims the exceptionally high bond strength of the SCI effectively bonds the cut asphalt surface back together and the finished repair is flush with the road surface ensuring no problems with standing water drainage or road ride quality.

The project’s reinstatement element, traditionally the slowest part of any trenching process, was completed at a rate of up to 600m a day. The rapid application of SCI meant the usual major traffic management costs of a highways maintenance project were kept to a minimum. 

Part of the 'Digital Shetland Strategy', the works will give fibre optic broadband to 80% of the islands' communities by the end of the first quarter of 2016, transforming communication between the Shetland Islands and the rest of the world and opening up new business opportunities.

For more information on companies in this article

Related Content

  • Self-healing roads, slippery roads and slimmer roads
    November 24, 2017
    This month’s bitumen technology pages bring you self-healing roads, slippery roads and slimmer roads and explains why one UK contractor has started manufacturing its own polymer modified bitumen - Kristina Smith reports. Professor Erik Schlangen, who heads up experimental micromechanics at the Delft University of Technology is receiving calls from all round the world these days. And it is hardly surprising because he and his team have invented a great new technology: asphalt that heals itself.
  • Mobile crusher quickly meets aggregate demand
    February 27, 2012
    Last year's flooding in the Australian state of New South Wales left the roads in the Richmond Valley in a poor state with 400km in need of urgent repair. To quickly meet the aggregate demand for the work, Richmond Valley Council called on contract crushing specialist M&M Crushing to produce 100,000tonnes of 20mm road base and 7mm, 10mm and 14mm graded aggregates from Peterson's Quarry.
  • Sunderland’s New Wear Crossing takes shape
    February 16, 2017
    The New Wear Crossing will be the first bridge to be built over the River Wear in Sunderland, UK, for more than 40 years Raising the bridge’s 100m-tall pylon promised to be a stunning visual sight, but also a tricky operation dictated by extremely variable local weather. World Highways went to press just before the operation, but not before the pylon had arrived by barge on January 7. It had completed a two-day crossing of the often unpredictable North Sea from the Belgian port of Ghent where it was f
  • Germany builds its first major PPI autobahn project
    July 7, 2015
    Rebuilding of one of the oldest motorways in Germany is testing out the possibilities for public-private project road construction reports Adrian Greeman A freshly renovated section of the A8 Autobahn in southern Germany will be watched with some interest this summer as traffic begins driving along its rebuilt carriageway and additional third lanes. That is not because of any special road features, other than a distinctive reddish colour to its concrete surface, but because it is a first fullscale public