Skip to main content

VIDEO: Huesker explains “Interaction flexibility”

Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures. Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.
August 4, 2017 Read time: 3 mins

235 Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures.

Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.

The key properties of effective reinforcement are adequate tensile stiffness and tensile strength coupled with good interaction behaviour. The concept of interaction flexibility - the flexibility of the incorporated geogrid - has been shown to improve the interaction between soil and reinforcement.

The safety and longevity of reinforced earthworks are largely dictated by three factors. Firstly, the incorporated geogrid must exhibit adequate tensile strength. Insufficient strength may lead to failure of the reinforcement and, consequently, of the entire structure.

Secondly, the incorporated geogrid must exhibit adequate tensile stiffness – as one of the factors determining maximum structural deformation.

Thirdly, good interaction behaviour between soil and reinforcement plays a vital role in force transmission between geogrid and soil and is therefore key to structural safety and performance.

"Interaction behaviour" is a general term denoting the capacity of a geogrid – among other things, through interlock and friction – to take up and transfer forces from the soil. Yet, all previous conceptual frameworks have failed to give due attention to one particular aspect: the impact of the flexural stiffness of the geotextile product on interaction. By adding this key criterion, the term "interaction flexibility" expands the previous definition of interaction behaviour.

Interaction flexibility is the combined ability of a reinforcement product, firstly, to achieve a strong bond with the soil through optimisation of the (micro-, meso- and macro-) interlock properties and, secondly, to adapt flexibly to soil particles to prevent void formation.

The importance of this adaptability is described by C. Lackner in his PhD thesis (2012, Graz University of Technology): "The interaction between soil and reinforcement is even stronger where the geogrid can adapt to the soil particles and thus prevent the formation of voids within the soil structure. In other words, the installation of very rigid geogrids can produce negative interaction effects."

The flexibility of a geogrid is easy to characterise by means of an existing test method, defined in ASTM D7748. Accordingly, flexural stiffness, measured in the unit "mg-cm", should be as low as possible.

For more information on companies in this article

Related Content

  • Advances in geosynthetics boost soil stabilisation
    March 13, 2012
    Special fabrics are often used in civil engineering works, including highways, to make soil stronger Geosynthetics have been used in roadway construction for thousands of years with natural materials being mixed with soil to improve quality and stability. While today's products are much more sophisticated, the principles are the same. For example, when used with soil, geotextiles (permeable fabrics) can filter, separate, reinforce, protect, or drain, and they are often made from polypropylene or polyester,
  • Geosynthetics revolutionise ground stabilisation
    March 13, 2012
    As powerful fabrics, geosynthetics and geotextiles have a wide range of applications in many civil engineering applications including roads and airfields. Geosynthetics specialist Tensar is introducing a radical new product that it thinks will revolutionise the construction industry. According to the company, its new product represents the "biggest advance in ground stabilisation technology for 25 years. Six years in development, it is said to offer major improvements in aggregate confinement and soil stabi
  • Pavement preservation techniques
    February 16, 2012
    In this second article of a three-part series on pavement preservation, Alan S. Kercher, of Kercher Engineering, discusses the different techniques that can be utilised as part of the preservation toolbox
  • Pavement preservation techniques
    April 12, 2012
    In this second article of a three-part series on pavement preservation, Alan S. Kercher, of Kercher Engineering, discusses the different techniques that can be utilised as part of the preservation toolbox An agency should utilise a comprehensive preservation toolbox that includes various techniques, which can be applied to specific needs. There is no one technique that will cost-effectively address all pavement problems. However, there are many preservation techniques that can provide an agency with the ab