Skip to main content

VIDEO: Huesker explains “Interaction flexibility”

Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures. Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.
August 4, 2017 Read time: 3 mins

235 Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures.

Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.

The key properties of effective reinforcement are adequate tensile stiffness and tensile strength coupled with good interaction behaviour. The concept of interaction flexibility - the flexibility of the incorporated geogrid - has been shown to improve the interaction between soil and reinforcement.

The safety and longevity of reinforced earthworks are largely dictated by three factors. Firstly, the incorporated geogrid must exhibit adequate tensile strength. Insufficient strength may lead to failure of the reinforcement and, consequently, of the entire structure.

Secondly, the incorporated geogrid must exhibit adequate tensile stiffness – as one of the factors determining maximum structural deformation.

Thirdly, good interaction behaviour between soil and reinforcement plays a vital role in force transmission between geogrid and soil and is therefore key to structural safety and performance.

"Interaction behaviour" is a general term denoting the capacity of a geogrid – among other things, through interlock and friction – to take up and transfer forces from the soil. Yet, all previous conceptual frameworks have failed to give due attention to one particular aspect: the impact of the flexural stiffness of the geotextile product on interaction. By adding this key criterion, the term "interaction flexibility" expands the previous definition of interaction behaviour.

Interaction flexibility is the combined ability of a reinforcement product, firstly, to achieve a strong bond with the soil through optimisation of the (micro-, meso- and macro-) interlock properties and, secondly, to adapt flexibly to soil particles to prevent void formation.

The importance of this adaptability is described by C. Lackner in his PhD thesis (2012, Graz University of Technology): "The interaction between soil and reinforcement is even stronger where the geogrid can adapt to the soil particles and thus prevent the formation of voids within the soil structure. In other words, the installation of very rigid geogrids can produce negative interaction effects."

The flexibility of a geogrid is easy to characterise by means of an existing test method, defined in ASTM D7748. Accordingly, flexural stiffness, measured in the unit "mg-cm", should be as low as possible.

For more information on companies in this article

Related Content

  • Promoting advances in sustainable roads worldwide
    February 8, 2012
    The International Road Federation (IRF), founded in 1948, is the only world forum advocating better and safer roads through better road design and construction bearing in mind the user. It is a unique institution that brings together members active in road infrastructure from both the private and public sectors.
  • Promoting advances in sustainable roads worldwide
    April 12, 2012
    Professor Martin Snaith, O.B.E., introduces an annual gathering that has grown over the years to become perhaps the world's foremost professional development forum promoting advances in sustainable roads worldwide. Over more than 15 years the Senior Road Executives Programme (SRE), organised by the internationally renowned Highways Group of the University of Birmingham, UK, in association with IRF, has established a worldwide reputation for providing top-quality professional development for executives worki
  • Hamm’s Dr Stefan Klumpp explains future of autonomous compaction
    December 20, 2016
    Autonomous vehicles that can move around without human intervention are not yet a part of everyday life, but they are almost within reach.
  • Energy efficient cement testing solution
    February 27, 2012
    In determining the mechanical strength of cement, the European Standard EN 196 prescribes both compressive and flexural tests, so when Italian company Tecnotest designed its current generation of cement testing machines, the aim was to obtain highly accurate results over the full scale despite the wide range involved by implementing a dual scale in a single test bay, using load cells as dynamometers.