Skip to main content

Using radar to deliver a fine runway finish

Radar Portal Systems (RPS) has spent a lot of time developing its sophisticated pavement top-surface photometric imaging system so it can cater specifically for the aviation market. This has now been specially developed for use on aircraft runways and taxiways The system was recently used at Brisbane Airport to survey runway and runway shoulders, collecting photometric top-surface data at a 4m width at speeds of up to 100km/h. This dataset allows the firm to display meshing data of the runway surface showin
April 4, 2014 Read time: 4 mins
Radar Portal Systems (RPS) pavement top-surface photometric imaging system has been deployed at Brisbane Airport
6830 Radar Portal Systems (RPS) has spent a lot of time developing its sophisticated pavement top-surface photometric imaging system so it can cater specifically for the aviation market. This has now been specially developed for use on aircraft runways and taxiways

The system was recently used at Brisbane Airport to survey runway and runway shoulders, collecting photometric top-surface data at a 4m width at speeds of up to 100km/h.

This dataset allows the firm to display meshing data of the runway surface showing: true mesh profile, mesh profile against the design, and mesh profile rutting minus the Cross-fall of each profile. For runways, manual inspections remain a required process. But machine-based data collection allows both a more rapid and more efficient assessment and is especially useful on busy runways, as well as providing a quantitative snapshot in time of the runway state. The result provides both an initial assessment of the runway state and definitive measurements that allow the detection of runway change over time. The firm’s sophisticated RoadScout technology can be applied not only to road pavements, but also runways and taxiways.  For use on a runway, a GPS-based guidance system is used to ensure accurate positional collection of multiple passes down a runway. The high precision, photometric-based surface imaging system allows accurate mapping of cracks, even on grooved surfaces. These photometric images can also be stitched together to produce a high resolution (1mm pixel size) map of the runway surface, showing both surface albedo and shape.
The laser data is stitched during post-processing to form a precise 3D mesh of the surface. Due to the use of the high precision IMU technology, the system is able to move beyond the accuracy of the reference station-corrected GPS system, allowing very accurate local topography measures.

This allows the production of measures such as long length rutting profiles (up to 15m in length), the calculation of Boeing roughness and groove closure. In addition, if a degraded area is detected using the surface imaging technology, ground penetrating radar (GPR) can be used to further determine the cause of this issue, by detecting the layer depths and possible areas of moisture ingress into the pavement structure. According to RPS, there is significant interest across the aviation sector in the implementation of this new technology and its benefits for the industry.

Core to the RoadScout technology is a generic hardware and software platform, which allows integration of the various imaging and GPR elements into a single vehicle. The package includes laser scanning, environmental cameras, photometric imaging systems, positioning systems and GPR imaging trailers. The frame is mounted to the back of a dual cab pickup, and a roof rack assembly for environmental cameras. The rear seats of the pickup are removed to house the computer and control electronics.

The data collection software is a flexible code base that allows efficient collection of data from multiple data sources, including display, processing and storage. The primary software is a multithreaded, 64-bit application, allowing large buffers to be used, which enables multiple systems to reliably operate off a single computer. The code is also designed to synchronise between multiple computers if further computing resources are required. Through the use of common streams and data saving methods, adding a new device to the system becomes easy, as only the interface to the new device needs to be written.

The patented RoadScout NM-GPR system can determine 46 profiles across a 2.5m width, enabling full 3D imaging of the road subsurface at 100km/h and to a depth of 2m. According to the company, this system offers a wider and deeper scan of the surface than other packages and can operate reliably in difficult road conditions. In addition, this system also performs common midpoint (CMP) dielectric compensation at the same time as data collection, allowing calibration of subsurface layer depths and estimation of moisture within pavement layers.  The firm claims that the package sets a high standard for high-speed GPR worldwide, with a massive opportunity for the technology to be utilised for roads, bridges and other infrastructure applications.

For more information on companies in this article

Related Content

  • IBI’s Routemapper charts new territory with Highways England
    September 14, 2016
    Mapping the asset High-speed data collection just got faster for England’s newly created strategic roads operator Highways England’s establishment as a publicly held company in 2015 created a need for a highly accurate asset inventory. This was potentially very costly and had serious safety implications. As well as its relationships with numerous managing agents and contractors, assets include 35,300km of highway, 12,100km of earthworks, 23,200km of safety fences, 150,000 technology assets and sig
  • Fugro to use its ARAN system in Dutch surveying deal
    May 9, 2019
    Fugro, a geo-data specialist, is using the latest version of its Automatic Road Analyser (ARAN) in a new five-year pavement survey contract for Dutch highways. The contract, with an option to extend to 10 years, was awarded by the Dutch infrastructure agency Rijkswaterstaat. It includes the collection of surface condition and road measurement data from 8,600km of principal highways each year. The company’s Automatic Road Analyser - ARAN - which is adapted to meet European specifications and includes i
  • Developments in bridge monitoring technology
    July 9, 2012
    Advances in bridge monitoring technology should help ensure structural safety Highly productive, Fugro Aperio's ground penetrating radar system offers accurate scanning of bridge condition Bridge engineers can now benefit from a new technology designed to pinpoint shallow targets, such as masonry fixings, reinforcement bars or delamination between thin layers. This uses the latest high resolution ground penetrating radar (GPR) antenna and has been developed by Cambridge-based Fugro Aperio in the UK. Operati
  • Advances in materials testing
    April 10, 2012
    Quicker, better, more cost effective materials testing - Kristina Smith writes. Most developments in materials testing technology involve updating and upgrading existing machines, either to meet changes to standards or to satisfy new needs in the market. And occasionally, a manufacturer will come up with something completely new. PUMA - the precision unbound materials analyser - falls into the latter category. It has been developed by Cooper Research Technology and Nottingham Transportation Engineering Cen