Skip to main content

Historic Oakland Bay Bridge receives a new asphalt road surface

Part of an iconic US bridge has been given a new lease of life, as Mike Woof reports The western section of the historic Oakland Bay Bridge in the US state of California has recently benefited from a series of improvements to strengthen its structural integrity and also upgrade the running surface. Contractor OC Jones & Sons of Berkeley CA, paved large portions of the bridge, taking on two different projects as part of the work. First was placement of the specialised epoxy on the self-anchored suspension (S
March 31, 2014 Read time: 5 mins
Compaction and rolling patterns were closely monitored given the challenging material
Part of an iconic US bridge has been given a new lease of life, as Mike Woof reports  

The western section of the historic Oakland Bay Bridge in the US State of California has recently benefited from a series of improvements to strengthen its structural integrity and also upgrade the running surface. Contractor 7707 OC Jones & Sons of Berkeley CA, paved large portions of the bridge, taking on two different projects as part of the work.

First was placement of the specialised epoxy on the self-anchored suspension (SAS) portion of the new bridge. The second project was the new transitional paving on the Oakland touchdown side of the new bridge, stretching some 1,289m from beyond the toll plaza to the new approach area. The 2451 California Department of Transportation (Caltrans) wanted a new surface on the approach, and also corrections to grade and slope.

Carrying some 280,000 vehicles/day, the bridge has a heavy traffic loading and the new running surface had to be sufficiently robust to cope with the application. Two 25mm lifts of epoxy asphalt concrete (EAC) were placed on the eastbound and westbound lanes of the Bay Bridge’s new SAS Span, with the material being selected due to its durability, skid resistance and light weight. The material used was unusual, and presented some challenges not normally seen with conventional asphalt concrete, according to Kelly Kolander, president and CEO of the contractor.

The EAC is essentially a 9mm mix that uses a two-part epoxy. One part is blended with AR 4000 paving oil and this is combined with a special dry aggregate and a separate epoxy resin, and mixed in a pug mill. The resultant EAC is then placed atop a two-part epoxy bond coat. That bond coat was applied to both the steel bridge deck and the first lift of EAC. The bond coat needed to be applied at a high application rate, using both a robotic device and spray wands. The epoxy products, as well as the technical support, were provided by Chemco Systems of Redwood City, CA.
“The EAC is significantly different from conventional AC in that once the material is produced from the batch plant, a chemical reaction begins as it is hauled to the project site,” project manager Bill Jensen said. “Due to this chemical reaction and extremely tight time and temperature requirements, consistency in travel time for the haul trucks and in the production of the material at the plant were crucial.”

To ensure efficient transport, OC Jones secured a haul route to the site with the help of the Californian Highway Patrol and Caltrans, to minimise delays from traffic disruptions. Once the material arrived, it was again tested before it could be placed through the paver. The window for mix placement was tight and closely monitored by testing personnel to ensure project specifications were met. The material then was approved for placement on the bridge deck.

The process had another complication as trucks and other machines were not allowed to travel on the paving lane after the bond coat had been applied, so the material had to be loaded from the side. As a result, OC Jones used a Weiler E1250A transfer vehicle on the job as the machine has a conveyor for offset paving, allowing the trucks and the Weiler machine to stay off the paving base and the bond coat.


As the E1250A does not have storage capacity, this helped keep its weight down, an important factor for bridge works. The material was discharged into a 2294 CAT AP1055E paver, which used non-contact averaging skis to ensure better ride quality.
Compaction and rolling patterns were closely monitored and achieved with Cat CB54 rollers and Cat PS150C rubber-tyred rollers.

The compactors typically made three complete passes, with movement up and back counting as a single pass.

Another important aspect of the project was the need to clean out the transfer vehicle and paver after every pass, typically 670m in length. Unlike conventional AC, the EAC material is not thermoplastic, and cannot be reheated. Once the chemical reaction occurs, the mix remains hard and this required removing any built-up material in the paver’s auger chamber as well as inside the transfer vehicle to prevent cured EAC from falling onto the finished mat, according to OC Jones’ area manager Kevin Goddard. The bridge was shut down over one holiday weekend as the paving crews reconstructed the approach area on the Oakland touchdown side. That portion of the project did not require the placement of EAC. Instead, the crews worked with conventional AC mix, as well as an open-graded asphalt cement, placing some 17,200 tonnes of material over an area of 93million m2. That project also had challenges and planers had to remove mix over much of the area before repaving could begin. So large was the required milling volume that up to seven machines worked continuously for 36hours. The levelling was particularly extensive in some areas. The eastbound direction required a large profile correction and required removing asphalt at depths up to 0.9m. “Complicated cross-slope corrections, levelling and new construction to tie into the new bridge structure from the existing toll plaza area proved challenging, given the tight time constraints,” said area manager Jim Gallagher.

 “There was an incredible amount of coordination between the AC plants, grinders, trucking, traffic control and access points,” Jensen said. “Over half of the material placed was required to correct cross-slope to aid drainage, establish a new roadway profile, and level uneven pavement, which is all very time-consuming.”

Additionally, the westbound portion goes from five lanes to 20 lanes at the toll plaza, then back down to five lanes. This made the joints and lane lines a major challenge but the machines handled the variable widths well. Equipment used included Cat AP1055E and 655D asphalt pavers, Cat CB64, CB54 and PS 150C rollers, as well as the Weiler E1250A transfer vehicle.

For more information on companies in this article

Related Content

  • Cat launches new pavers at Intermat
    February 16, 2012
    A full range of pavers, featuring both tracked and wheeled undercarriages, also will be at the show. The display includes the new AP255E, which is the smallest paver in the range, and the new AP1055E, the largest paver in the Cat range.
  • Multiple asphalt plants supply major highway construction
    July 12, 2012
    One company has produced eight asphalt plants for a major project, and others are introducing new models as Patrick Smith reports Algeria's US$11.2 billion East-West Highway development, the world's largest current highway construction project, forms part of the larger Trans-Maghreb Motorway project, and is scheduled for completion in 2010. It will run for 1,216km, ensuring the link between Annaba in the north-east and Tlemcen in the north-west, passing directly through 24 provinces and linking Algeria to T
  • BOMAG’s smart asphalt compaction technology in use
    May 25, 2016
    BOMAG’s highly sophisticated compaction control technology is now being used successfully on the highway project to link Warsaw with St Petersburg. The system is being employed in the rural area around the border triangle of Lithuania, Latvia and Belarus. Lithuanian road contractor Panevezio Keliai won the package of works to upgrade a stretch of the E262 in Zarasai. The project requires high quality as the E262 route links Warsaw with St Petersburg and carries a large volume of traffic, including a hig
  • GPS machine control boosts road surface quality
    February 14, 2012
    The use of GPS machine control on sub-base has improved final rideability on a major highway reconstruction project. Innovative construction techniques have helped to upgrade a 9.6km stretch of the 307km long I-96 highway in the US state of Michigan. The Michigan Department of Transportation (MDOT) project was initiated in the third quarter of 2009 and was completed in the fourth quarter of 2010. Interstate Highway Construction acted as general contractor on the project, which included widening the shoulder