Skip to main content

Extreme climates pose tough duty cycles and challenges for testing procedures

This month we look at how pavement testing technology is responding to extremes of temperature, showcase concrete testing in Doha and look at how water drops could help identify delaminated bridge decks - Kristina Smith reports One of the biggest challenges that pavement engineers face is how to design for extremes of temperature. Designing for cold weather can result in problems at higher temperatures – and vice versa. In Scandinavia, generally a cold climate, they are facing this problem. In the summer,
April 5, 2013 Read time: 3 mins
In desert conditions daytime ambient temperatures can easily reach 50°C while conditions are much colder at night, providing tough duty cycles for asphalt surfaces

This month we look at how pavement testing technology is responding to extremes of temperature, showcase concrete testing in Doha and look at how water drops could help identify delaminated bridge decks - Kristina Smith reports

One of the biggest challenges that pavement engineers face is how to design for extremes of temperature. Designing for cold weather can result in problems at higher temperatures – and vice versa.

In Scandinavia, generally a cold climate, they are facing this problem. In the summer, temperatures in the pavement can reach 50°C when the sun shines for more than 20 hours. This means that rutting is one of the most frequent problems on roads carrying heavy traffic.

Researchers at the Swedish Road and Transport Research Institute, 7264 VTI, have developed a new shear box test which can evaluate the shearing and viscosity properties of bituminous materials at different temperatures and different traffic speeds. These properties are good indicators of an asphalt mixture’s resistance to deformation under moving loads.

“This method will help us get the optimum solution for a pavement design,” said Hassan Hakim, who with CTI colleague Safwat Said has carried out the research. “We can use a modified bitumen and understand how the asphalt changes due to the temperature. That way we can find something that is more resistant in the hot weather but still soft in the cold weather.”

The shear test involved gluing a cylindrical specimen to two plates. One plate exerts a sinusoidal force, mimicking acceleration or braking force while the other applies a constant compressive force equivalent to the weight of the vehicle. The frequency of the sinusoidal load and the temperatures are varied.

VTI has also gone on to create a model which can estimate the rutting development in the pavement. Hakim said that VTI has compared the model’s predictions against the actual rutting on a road which has been in use for 10 years with “good results.”

VTI also offers a Prall tester, which was launched in early 2012, required for climates such as Scandinavia where studded tyres are used in winter weather.  The VTI Prall is designed to meet the requirements for method A in the European standard EN 12697-16:2004 “Bituminous mixtures- Test methods for hot mix asphalt- Part 16: Abrasion by studded tyres.”

VTI would like to make it clear that it was not involved with the development of  the Cooper Prall tester, as stated in the May 2012 issue of World Highways and that its Prall tester is commercially available.


Water droplets could help detect bridge damage

Researchers at Brigham Young University in the US have discovered a potential new means of testing the integrity of bridges: dropping water onto the deck and recording the sound.

Brian Mazzeo and W Spencer Guthrie reported the results of their study ‘Acoustic impact-echo investigation of concrete delaminations using liquid droplet excitation’ in the journal Non-Destructive Testing and Evaluation International.

Impact-echo testing is often used on bridges and other structures. Engineers drag heavy chains over the bridge deck and listen to the sound it makes. Where a concrete structure has delaminated, often due to rusting reinforcement, a different sound is heard.

This method can be costly and disruptive, however, as it often requires lane closures. If the sound of water droplets, sprayed over the deck from a moving vehicle could be used, it would vastly speed up the process.

It is early days for this new method of testing. More research will be required before these findings can be developed into a useable solution.

For more information on companies in this article

Related Content

  • ARRB Systems' network-level continuous friction testing
    November 20, 2024
    Pavement safety assessments have traditionally focused on discrete low-density friction assessments using proven technology. But more detailed investigations and analysis are now feasible through improved technologies, explains Simon Tetley of ARRB Systems*.
  • Improving Rutting with Sripath’s PGXpand® PMB-Mixes
    March 1, 2023
    Indinfravit Trust, a major infrastructure investment and road projects management company in India, recently conducted a demonstration trial to laydown PGXpand-Modified-Bitumen Mixes on a highway in Rajasthan, India.
  • The latest new on materials testing equipment from around the worlds
    January 18, 2016
    The US’s Superpave standard is gaining dominance around the world – but there’s still work to be done where recycled material or other modifiers are added to the mix - Kristina Smith reports. A few years ago, there was still some debate in the testing world as to whether the US or European testing regimes would dominate. Today, it does seem that the US Superpave system is most widely used, albeit with local adaptations.
  • Bitumen additives raise environmental questions
    February 14, 2012
    New products, including additives, are coming onto the market to help reduce the cost of producing bitumen. Patrick smith reports. According to Eng. Paolo Visconti of Iterchimica, environmental issues and the health and safety of operators of manufacturing plants and workers laying bituminous mixes have raised long debates on the possible harmfulness of fumes which are emitted when heating these mixes at the temperatures (160-180°C) required for their production. "If, on the one hand, the effects on operato