Skip to main content

Beijing airport runway features novel asphalt solution

Beijing ranks amongst the five busiest airports across the globe and its runway surfaces face tough stresses as a result. Over 94 million passengers flew through Beijing Capital Airport (BCA) in 2016 and as many as 70 flights/hour can take off and land during peak times. The 60m-wide middle runway of Beijing Capital International Airport is the busiest of the three runways, with a landing and take-off flight ratio of up to 40%. This runway was first rehabilitated in 1996 and then repaired in 2013 and 2015
December 7, 2017 Read time: 3 mins
Paving in echelon was carried out at Beijing airport, with the project benefiting from Evotherm technology

Beijing ranks amongst the five busiest airports across the globe and its runway surfaces face tough stresses as a result

Over 94 million passengers flew through Beijing Capital Airport (BCA) in 2016 and as many as 70 flights/hour can take off and land during peak times. The 60m-wide middle runway of Beijing Capital International Airport is the busiest of the three runways, with a landing and take-off flight ratio of up to 40%. This runway was first rehabilitated in 1996 and then repaired in 2013 and 2015 to address damaged areas. However in April 2017 major rehabilitation work was carried out, which included pavement milling, paving and light installing. The construction area consisted of 130,000m2 of runway and 70,000m2 of taxiway for a total construction area of 200,000m2.

Paving and maintaining an airport runway is never easy. The ageing issues of most concern are block cracking and fatigue cracking so 8536 Evotherm warm mix asphalt (WMA) technology was selected to help extend the life of the airport’s runway.

Chinese contractor Beijing Sino-Aero Construction Engineering (BSACE) worked with Evotherm to select the right technology for the project. When searching for a product, the focus was maximising compaction and consistency of the mix due to the stiff and difficult-to-compact mixture types on the runway.

Yifan Yang, technical services at Ingevity in China said, “This project lasted for four weeks in April. It required speed in daytime and night-time paving, so that the least amount of disruption to BCA’s traffic occurred.”

“Evotherm was chosen particularly because of the materials used in this project,” said Lennon Dong, structural technical management for Ingevity in China. He said that the airport mixtures resulted in Marshall stability over 14kN at 60˚C, along with rutting resistance of over 10,000 passes/mm when measured with the Chinese wheel rut test. The bottom course applied by BSACE contained a high concentration SBS and an anti-rutting agent, and the wearing course mix was a polymer modified stone matrix asphalt (SMA) mixture with a high concentration SBS, an anti-rutting agent and glass fibre additives.

BSACE had two mix plants set up for the project and Evotherm was added as the tank trucks were unloaded. The runway’s pavement structure consisted of about 50mm of warm SMA surface layer, another 60mm of warm dense-graded middle layer mixture, and 80mm of modified WMA mixture for the bottom layer.

The HMA production temperature reduction allowed the workability of the high viscosity and stiff asphalt mixture used on runway pavement to be improved. Compaction aids were utilised to better cope with the night construction conditions to optimise performance. The technology and methods used allowed for improved adhesion between the asphalt binder and aggregates as well as increasing resistance to water damage. The use of a lower production temperature meanwhile helped to limit binder ageing and improve overall durability. The Evotherm additive was easy to use as it can be added to the asphalt as the asphalt tank trucks are being loaded, while there was no need for any changes to the plant. Production temperatures for the asphalt ranged from 175-185˚C, with paving temperatures from 165-175˚C and compaction temperatures from 150-165˚C.

“Evotherm provided many benefits on this runway project,” said Merlin Zhou, technical marketing management with Ingevity in China. “We saw significant improvement in the workability of high viscosity and stiff asphalt mixtures typically used on runway pavements. We also encountered windy conditions during night paving and found the Evotherm helped greatly with compaction despite the windy conditions.” As an added bonus, BSACE completed the project three days earlier than expected.

For more information on companies in this article

Related Content

  • Improved efficiency for material transfer
    March 24, 2020
    Dynapac’s latest material transfer vehicle (MTV) is said to offer improved efficiency and versatility for asphalt paving applications. In addition, the firm is also now introducing a versatile paver for the North American market.
  • Wirtgen’s 3800 CR rips it up in San Jose
    May 16, 2017
    In California, in-situ cold recycling with a Wirtgen 3800 CR recycler has proved to be the most economical solution. In the US’s Golden State – California – Wirtgen’s 708kW powerhouse the 3800 CR recycler resurfaced 160km of San José’s main traffic arteries in situ, on-the-spot. The 3800 CR worked with a Vögele VISION 5200-2i tracked paver in a rear-load process. With this method, the 3800 CR travels in reverse, removing the damaged asphalt layers in a down-cut process and transferring the recycled material
  • BOMAG’s smart asphalt compaction technology in use
    May 25, 2016
    BOMAG’s highly sophisticated compaction control technology is now being used successfully on the highway project to link Warsaw with St Petersburg. The system is being employed in the rural area around the border triangle of Lithuania, Latvia and Belarus. Lithuanian road contractor Panevezio Keliai won the package of works to upgrade a stretch of the E262 in Zarasai. The project requires high quality as the E262 route links Warsaw with St Petersburg and carries a large volume of traffic, including a hig
  • Stiffer roads, less fuel?
    October 19, 2020
    Researchers at the Massachusetts Institute of Technology looked at how much fuel – and, hence carbon – could be saved by making roads in the US stiffer. They concluded that by resurfacing 10% of roads every year for the next 50 years, 0.5% of total transport emissions, or 440 megatons, would be saved over that period.