Skip to main content

Asphalt reinforcement extends road life

Special reinforcements can extend the life of an old or new road, and also offer environmental benefits. Patrick Smith reports. Asphalt reinforcement can extend the service life of a resurfaced road by a factor of 3-4, says Huesker, developers of the HaTelit range of asphalt reinforcement. Aimed at preventing the propagation of reflective cracking from an old asphalt layer through a new surface course, Huesker claims the formation of reflective cracking is considerably delayed or even completely prevented u
July 12, 2012 Read time: 4 mins
Virtually no fibres remained on the milling drum.

Special reinforcements can extend the life of an old or new road, and also offer environmental benefits. Patrick Smith reports.

Asphalt reinforcement can extend the service life of a resurfaced road by a factor of 3-4, says 235 Huesker, developers of the HaTelit range of asphalt reinforcement. Aimed at preventing the propagation of reflective cracking from an old asphalt layer through a new surface course, Huesker claims the formation of reflective cracking is considerably delayed or even completely prevented using HaTelit C 40/17.

The reinforcement grid made from high-modulus polyester is combined in the factory with an ultra-thin nonwoven installation aid. Both are given a bituminous coating to ensure the optimum bond between the asphalt layers, an important parameter in the functioning of asphalt reinforcement (a reinforcing effect can only be achieved where the bond is capable of transmitting the forces).

"However, even the best asphalt reinforcement cannot guarantee an asphalt road will have an infinite life. The ease of removal of surfacing, by milling among other methods, is an increasingly frequent focus for discussion," says Huesker.

So it carried out milling trials in conjunction with Mischwerk Schwelm (in 2004) and RWTH Aachen University, Germany (in 2008) to demonstrate that a polyester grid (in this case HaTelit) can be milled as normal and the millings can be recycled.

The Mischwerk Schwelm trial length included a 0.6kg/m² bitumen emulsion (U70K) coating sprayed onto an existing asphalt base with a layer of HaTelit installed, overlaid with a 40mm thick asphalt surface course. It was removed after six weeks by a 2395 Wirtgen W 500 milling machine (drum width 500mm) at a depth of 50mm (10mm below the asphalt reinforcement).

The HaTelit reinforcement grid had no detrimental effect on the milling operation, and the crushed millings were added at a rate of 30% to the mix for a new asphalt base layer, which was then laid in the test length. Testing the mix for the new base showed negligible differences compared with the reference sample without reinforcement fibres.

The influence of HaTelit asphalt reinforcement on milling characteristics was also investigated under defined conditions by the Institute of Road and Traffic Engineering at the RWTH Aachen University.

On its test bed, various test lengths of road construction, including some that went beyond the limits of RStO 01, the German road construction design and maintenance manual, were laid on a frost-heave protection layer.

The investigation aimed to analyse and evaluate the milling characteristics of the reinforced road construction in terms of process engineering and the machinery used (a 500mm drum width milling machine was used for the milling tests).

In addition to investigating particle size distribution and the type and size of reinforcement fibres in milled asphalt, the possibility of recycling the removed asphalt, containing reinforcement fibres in the form of asphalt granulate in bitumen-bound layers, was examined.

A 60mm asphalt binder course and an asphalt base were laid over the frost protection layer; the polyester asphalt reinforcement (HaTelit) was installed and overlaid with a 40mm asphalt surface course.

The test bed was divided into two different test lengths, and on the first, the wearing course was milled down to a few millimetres above the asphalt reinforcement thus leaving the reinforcement in place during refurbishment.

"Although the asphalt reinforcement had a remaining cover of only a few millimetres, no detachment nor removal of fibres of the asphalt reinforcement by debonding was observed. The millings were solely composed of the asphalt layer material," says Huesker.

In the second trial, the asphalt surface course and the first centimetre of the asphalt binder course (including reinforcement) were removed by the milling machine in a single milling operation, a procedure recommended by Huesker for the removal of HaTelit-reinforced roads.

The RWTH Aachen University confirms that during removal of the material (from the process engineering point of view) no detrimental effect on the milling operation was observed: the millings were finely graded, and the fibres of asphalt reinforcement produced from the milling process were evenly distributed in the millings. After milling, the drum was checked for adhering fibres (over the whole test bed only two fibres had been trapped) with no detrimental effects on the milling process being observed.

"No negative indications were observed in the course of the asphalt testing to determine the effect of asphalt reinforcement fibres on recyclability (on the basis of Marshall stability parameters)."

It should be mentioned that both milling tests took place using a small milling machine. It therefore can be assumed that more powerful machines used for larger areas would not suffer any detrimental effect on their milling speed, added Huesker.

Huesker has been producing asphalt reinforcement for almost 40 years. To date the company has not encountered any complaints relating to the removal of HaTelit-reinforced roads.

For more information on companies in this article

Related Content

  • Airport's high demands on asphalt and concrete techniques
    July 11, 2012
    Airport runway, taxiway and parking areas make high demands on paving requirements, both with concrete and asphalt techniques. Mike Woof reports. High quality surface finishes are required in airport environments for runways, taxiways and aircraft parking areas. Because of the speed at which aircraft take off and land and the massive forces exerted due to the weight of the aircraft, particularly during landing, runway structures need to be incredibly strong. The surfaces also have to be constructed to very
  • Versatile recycling option
    February 28, 2012
    A pavement recycling contractor in eastern New York State in the US is using an innovative and versatile Wirtgen machine to carry out very different road rehabilitation tasks. This unit is being used to lay foamed bitumen-recycling pavements as well as carrying out cold-milling.
  • Seal of approval
    August 2, 2012
    Timely maintenance using proven cost-effective methods can extend the life of a highway by many years as Patrick smith reports Highways are expensive assets to construct, and the wear and tear of modern traffic means that regular maintenance will delay costly repairs or in extreme cases reconstruction. There are a number of methods of carrying out such maintenance, and these include the use of slurry seals and micro-surfacing, which are cold mixed asphalt which is a mixture of graded aggregate, asphalt emul
  • Innovative high performance asphalt technology
    February 14, 2012
    An authority replaces container wharf pavement damaged by forklift loads in world's first commercial use of high-performance asphalt base course. By Paul Fournier