Skip to main content

Asphalt reinforcement extends road life

Special reinforcements can extend the life of an old or new road, and also offer environmental benefits. Patrick Smith reports. Asphalt reinforcement can extend the service life of a resurfaced road by a factor of 3-4, says Huesker, developers of the HaTelit range of asphalt reinforcement. Aimed at preventing the propagation of reflective cracking from an old asphalt layer through a new surface course, Huesker claims the formation of reflective cracking is considerably delayed or even completely prevented u
July 12, 2012 Read time: 4 mins
Virtually no fibres remained on the milling drum.

Special reinforcements can extend the life of an old or new road, and also offer environmental benefits. Patrick Smith reports.

Asphalt reinforcement can extend the service life of a resurfaced road by a factor of 3-4, says 235 Huesker, developers of the HaTelit range of asphalt reinforcement. Aimed at preventing the propagation of reflective cracking from an old asphalt layer through a new surface course, Huesker claims the formation of reflective cracking is considerably delayed or even completely prevented using HaTelit C 40/17.

The reinforcement grid made from high-modulus polyester is combined in the factory with an ultra-thin nonwoven installation aid. Both are given a bituminous coating to ensure the optimum bond between the asphalt layers, an important parameter in the functioning of asphalt reinforcement (a reinforcing effect can only be achieved where the bond is capable of transmitting the forces).

"However, even the best asphalt reinforcement cannot guarantee an asphalt road will have an infinite life. The ease of removal of surfacing, by milling among other methods, is an increasingly frequent focus for discussion," says Huesker.

So it carried out milling trials in conjunction with Mischwerk Schwelm (in 2004) and RWTH Aachen University, Germany (in 2008) to demonstrate that a polyester grid (in this case HaTelit) can be milled as normal and the millings can be recycled.

The Mischwerk Schwelm trial length included a 0.6kg/m² bitumen emulsion (U70K) coating sprayed onto an existing asphalt base with a layer of HaTelit installed, overlaid with a 40mm thick asphalt surface course. It was removed after six weeks by a 2395 Wirtgen W 500 milling machine (drum width 500mm) at a depth of 50mm (10mm below the asphalt reinforcement).

The HaTelit reinforcement grid had no detrimental effect on the milling operation, and the crushed millings were added at a rate of 30% to the mix for a new asphalt base layer, which was then laid in the test length. Testing the mix for the new base showed negligible differences compared with the reference sample without reinforcement fibres.

The influence of HaTelit asphalt reinforcement on milling characteristics was also investigated under defined conditions by the Institute of Road and Traffic Engineering at the RWTH Aachen University.

On its test bed, various test lengths of road construction, including some that went beyond the limits of RStO 01, the German road construction design and maintenance manual, were laid on a frost-heave protection layer.

The investigation aimed to analyse and evaluate the milling characteristics of the reinforced road construction in terms of process engineering and the machinery used (a 500mm drum width milling machine was used for the milling tests).

In addition to investigating particle size distribution and the type and size of reinforcement fibres in milled asphalt, the possibility of recycling the removed asphalt, containing reinforcement fibres in the form of asphalt granulate in bitumen-bound layers, was examined.

A 60mm asphalt binder course and an asphalt base were laid over the frost protection layer; the polyester asphalt reinforcement (HaTelit) was installed and overlaid with a 40mm asphalt surface course.

The test bed was divided into two different test lengths, and on the first, the wearing course was milled down to a few millimetres above the asphalt reinforcement thus leaving the reinforcement in place during refurbishment.

"Although the asphalt reinforcement had a remaining cover of only a few millimetres, no detachment nor removal of fibres of the asphalt reinforcement by debonding was observed. The millings were solely composed of the asphalt layer material," says Huesker.

In the second trial, the asphalt surface course and the first centimetre of the asphalt binder course (including reinforcement) were removed by the milling machine in a single milling operation, a procedure recommended by Huesker for the removal of HaTelit-reinforced roads.

The RWTH Aachen University confirms that during removal of the material (from the process engineering point of view) no detrimental effect on the milling operation was observed: the millings were finely graded, and the fibres of asphalt reinforcement produced from the milling process were evenly distributed in the millings. After milling, the drum was checked for adhering fibres (over the whole test bed only two fibres had been trapped) with no detrimental effects on the milling process being observed.

"No negative indications were observed in the course of the asphalt testing to determine the effect of asphalt reinforcement fibres on recyclability (on the basis of Marshall stability parameters)."

It should be mentioned that both milling tests took place using a small milling machine. It therefore can be assumed that more powerful machines used for larger areas would not suffer any detrimental effect on their milling speed, added Huesker.

Huesker has been producing asphalt reinforcement for almost 40 years. To date the company has not encountered any complaints relating to the removal of HaTelit-reinforced roads.

For more information on companies in this article

Related Content

  • Wirtgen’s 3800 CR rips it up in San Jose
    May 16, 2017
    In California, in-situ cold recycling with a Wirtgen 3800 CR recycler has proved to be the most economical solution. In the US’s Golden State – California – Wirtgen’s 708kW powerhouse the 3800 CR recycler resurfaced 160km of San José’s main traffic arteries in situ, on-the-spot. The 3800 CR worked with a Vögele VISION 5200-2i tracked paver in a rear-load process. With this method, the 3800 CR travels in reverse, removing the damaged asphalt layers in a down-cut process and transferring the recycled material
  • Total Styrelf tests start in England
    April 15, 2021
    Resurfacing has started with Total Styrelf eXtreme 100 and Total Styrelf Long Life binders.
  • Bitumen technology ideal for road repairs
    July 4, 2012
    Mike Woof discusses some novel developments relating to bitumen In the developed countries of Western Europe there is an increasing shift away from new highway construction to maintaining and rebuilding existing roads. In Germany alone, a network of asphalt roads extending more than 600,000km will have to be maintained or repaired. Highway maintenance techniques do vary between European countries but some commonalities exist. There are techniques that have been sidelined in the last few years but which now
  • New testing equipment and services
    April 21, 2016
    This month’s round-up looks at new equipment from a number of manufacturers and a new bitumen testing service in the UK from global player Intertek - Kristina Smith reports CONTROLS GROUP has unveiled new machines from each of its specialist divisions, including a new triaxial tester from its soil mechanics arm Wykham Farrance; an E-modulus tester from its concrete testing division; and an asphalt binder analyser from PAVELAB SYSTEMS, its asphalt division. TRITECH is the result of 50 years of developm