Skip to main content

PB designing infrastructure for connected vehicle project

Parsons Brinckerhoff (PB) has been selected to design and supervise deployment of technology infrastructure for a US Department of Transportation (US DoT) pilot programme to study the potential of operating connected vehicles on the streets and highways of Ann Arbor, Michigan. Called the Connected Vehicle Safety Pilot Model Deployment project, the $15 million research effort is being undertaken by the University of Michigan Transportation Research Institute (UMTRI) and its partners on behalf of the US DoT.
April 24, 2012 Read time: 2 mins
2693 Parsons Brinckerhoff (PB) has been selected to design and supervise deployment of technology infrastructure for a 2364 US Department of Transportation (US DoT) pilot programme to study the potential of operating connected vehicles on the streets and highways of Ann Arbor, Michigan.

Called the Connected Vehicle Safety Pilot Model Deployment project, the $15 million research effort is being undertaken by the 5186 University of Michigan Transportation Research Institute (UMTRI) and its partners on behalf of the US DoT. The programme will deploy connected vehicle technologies in Ann Arbor and data from the model deployment will be used to evaluate the potential for this technology to revolutionise automobile safety.

The advanced technology will be tested in a year-long study, which will involve the installation of wireless devices in up to 3,000 vehicles, to allow communication among the vehicles, and between the vehicles and the surrounding roadside equipment. During the deployment US DoT will evaluate the effectiveness of connected vehicle technology to prevent crashes in an everyday environment. Connected vehicle communication is based on Dedicated Short Range Communications (DSRC).

PB’s role will be to oversee  the infrastructure elements of the project, ensuring that all 29 roadside equipment installations are planned, engineered, procured, installed, integrated, and remain operational according to an extremely aggressive schedule.

Infrastructure will include roadside radio transmitter equipment at 21 signalised intersections, three curve locations, and five freeway sites, a robust communications backhaul network using both wireless and fibre, and facilities to process data and to showcase the system. Infrastructure also includes the replacement of signal controllers and specialised converters along two major corridors that will broadcast signal phase and timing data to vehicles via the DSRC network.

At the conclusion of the model deployment test, Parsons Brinckerhoff will assist the US DoT and UMTRI in any follow-up experiments and/or decommissioning of the roadside equipment.  The project is scheduled for completion in December 2013.

For more information on companies in this article

Related Content

  • IRF World Congress 2024: empowering mobility for a sustainable future
    August 5, 2024
    The IRF World Congress 2024 will focus on empowering mobility for a sustainable future for all.
  • The era of workzone data
    July 4, 2018
    Portable work zone messaging is now integral - not an add-on - when it comes to safety on large-scale highway projects. Andrew Williams* reports. Portable work zone ITS solutions have emerged in recent years as important flexible tools for managing major roadwork projects, from new-build to upgrades. They effectively ensure traffic disruption is kept to a minimum and lives can be saved. As such, the technology forms a central component of a major €1.7 billion project in the southern English county of Cambr
  • Sweden awards Smartroad Gotland and Electreon a test road in Visby
    April 17, 2019
    Swedish inductive road consortium Smartroad Gotland has won a contract to convert 1.6km of road around Visby into an electric vehicle demonstration bed. The award by Sweden’s government transport administration agency Trafikverket covers a route used by buses and is also popular with logistics vehicle drivers between Visby Airport and central Visby. The former Hanseatic city, with a population around 25,000, is on the island of Gotland and has been a UNESCO World Heritage Site since 1995. Visby joins
  • Rigorous testing for high performance materials
    February 9, 2012
    Today’s highways require high performance materials, and this means rigorous testing as Patrick Smith reports Highways are under greater pressure than ever today and asphalts have to grant high performances in order to withstand traffic and meet the standards. Studying the plastic permanent deformations in hot mix asphalt (HMA) is very important to obtain useful information for mix designers as an appropriate mix design will reduce the formation of unevenness on road surface. To investigate the effect of mi