Skip to main content

New York unveils 'Midtown in Motion' traffic management system

New York Mayor Bloomberg has unveiled a new, technology-based traffic management system that allows city traffic engineers to monitor and respond to Midtown Manhattan traffic conditions in real time, improving traffic flow on the city’s most congested streets.
February 27, 2012 Read time: 3 mins
New York Mayor Bloomberg has unveiled a new, technology-based traffic management system that allows city traffic engineers to monitor and respond to Midtown Manhattan traffic conditions in real time, improving traffic flow on the city’s most congested streets.

The system, called Midtown in Motion, includes 100 microwave sensors, 32 traffic video cameras and E-ZPass readers at 23 intersections to measure traffic volumes, congestion and record vehicle travel times in the approximately 110-square block area bound by Second to Sixth Avenues and 42nd to 57th streets. The combined data is transmitted wirelessly to the city’s traffic management centre in Long Island City, allowing engineers to quickly identify congestion choke points as they occur and remotely adjust Midtown traffic signal patterns to clear traffic jams.

Department of Transportation engineers are using recently upgraded traffic signal control systems to adjust the traffic lights. The real-time traffic flow information will be made available to motorists and to app developers for use on PDAs and smart phones. The wireless system is made possible through the use of the New York City Wireless Network (NYCWiN) – a wireless network developed and managed by the Department of Information Technology and Telecommunications.

“We are now using the most sophisticated system of its kind in the nation to improve traffic flow on the city’s most congested streets – Midtown Manhattan,” said Mayor Bloomberg. “The technology will allow traffic engineers to immediately identify congestion choke points as they occur and remotely alter traffic signal patterns to begin to clear up Midtown jams at the touch of a button.”

Earlier generations of traffic signals only could be reliably set to adjust to preset signal patterns based on the time of day, leaving limited ability to respond to crashes, construction, special events like the UN General Assembly and times when congestion saturates the network, causing backups that block cross streets and crosswalks. Depending on the traffic situation, traffic lights can be adjusted to provide a more even distribution of traffic entering Midtown so that already congested areas do not become oversaturated, or priority can be given to clearing isolated backups resulting from breakdowns, fender-benders or double-parked vehicles. On the avenues, engineers can switch more easily between a simultaneous signal pattern, where all the signals on the avenue turn green or red at the same time, and a traffic signal progression, which lets vehicles travelling at the speed limit encounter green lights as they drive along a corridor. The system lets engineers use the more effective pattern based on measured traffic conditions.

The Midtown in Motion program included the installation of turn lanes to 53 intersections, allowing vehicles to turn from cross town streets onto the avenues without blocking an entire lane of through-traffic, and added turn signals at 23 of these intersections to allow turning vehicles to do so more safely without conflicting with pedestrians. Planning and installation of Midtown in Motion components began last summer, and was in addition to ongoing technology upgrades to the city’s traffic signal system. The total cost for installation of the system was $1.6 million.

Related Content

  • It’s ITS upgrade time for New York’s George Washington Bridge
    September 16, 2015
    The electronic highway signage system and field devices for New York’s George Washington Bridge are to undergo a major overhaul in a US$65.1 million project. Bridge owner Port Authority of New York has approved the project to replace the intelligent transportation system which includes the upgrade and replacement of 11 variable message signs and the installation of seven new ones.
  • Streetlight control with Urban Node 324
    April 25, 2022
    Each Urban Node 324 Cellular city streetlight LED luminaire controller includes the Nordic Semiconductor nRF9160 multi-mode NB-IoT/LTE-M System-in-Package (SiP) and plugs into an industry-standard Zhaga LED lighting socket.
  • Weigh in motion technology reduces road damage
    February 8, 2012
    Overweight vehicles cause enormous damage to road structures but they can be caught, even at high speed. Weigh-in-motion or WIM devices are designed to capture and record axle weights and gross vehicle weights as vehicles drive over a measurement site.
  • Brisbane’s Airport: Innovative Management of One of the World’s Busiest Runways
    June 26, 2014
    When it comes to runways, there are few busier then Brisbane’s main runway. Servicing both domestic and international travel, with over 200,000 movements per year, operating without a curfew Brisbane’s main runway is the busiest in Australia. For maintenance, crews only have a limited period of time to determine the pavement condition, normally during the night, making the detection of pavement faults difficult. To resolve this issue, a new high speed pavement scanner was used to rapidly survey the pavem