Skip to main content

Danish SolarFuture builds solar facility by Öresund Bridge

Solar cell panels worth around €270,000 will produce energy for the Øresund Bridge that connects Denmark and Sweden. Danish companies SolarFuture and Solarpark DK have been awarded the contract to install 1,500m² solar panels near the toll station of the Øresund Bridge. The three-year agreement is with Øresundsbro Konsortiet - the Danish-Swedish company that owns and operates the Øresund Bridge. The panel will generate around 4% of the power to operate the bridge, including deck lighting and
January 10, 2018 Read time: 2 mins

Solar cell panels worth around €270,000 will produce energy for the Øresund Bridge that connects Denmark and Sweden.

Danish companies SolarFuture and Solarpark DK have been awarded the contract to install 1,500m² solar panels near the toll station of the Øresund Bridge.

The three-year agreement is with Øresundsbro Konsortiet - the Danish-Swedish company that owns and operates the Øresund Bridge.

The panel will generate around 4% of the power to operate the bridge, including deck lighting and building interior lighting at an estimated annual saving of close to €27,000. There will also be an estimated CO2 reduction of 85tonnes.

Eventually, solar power could supply around 10% of energy with solar power, said Bengt Hergart, property director at Øresundsbro Konsortiet.

Solar panels will be placed between the northern and southern side of the toll station and at least 3m from the traffic lane, behind the railing and light columns - close to both the motorway and the railway.

The Øresund, which opened in 2000, is a road-rail bridge-tunnel structure running across and under the Øresund strait from the Danish capital Copenhagen to Malmö in Sweden. The road and rail runs along an 8km cable-stayed bridge to an artificial island where it then enters a 4km-long tunnel.

The cable-stayed bridge features two 204m-high pylons supporting the 490m-long bridge span across the Flinte Channel. The motorway runs on the upper level while the railway runs underneath.

Most bridge structures including the piers and spans were built on land and towed into position on barges. Only the pylons were cast in situ. The Øresund is operated by both countries and was designed by Danish engineering firm COWI along with main architect George KS Rotne.

Related Content

  • New Wear Crossing cables fully installed and tensioned to 50%
    September 21, 2017
    Structural engineering company VSL International has installed all 28 cable stays of England’s New Wear Crossing and stressed them to 50% of their design load. The next stage of stressing the cables will happen next month and be to 100% of design load. This will allow the construction team to adjust and tension them just enough to lift the bridge deck off the blue steel temporary supports that were constructed in the river to take the weight of the structure.
  • The Danish Road Directorate is testing climate-friendly asphalt
    June 4, 2018
    Over the next few weeks, Denmark is hosting a world-premiere in the field of green infrastructure. A busy section of the motorway exiting the greater area of Copenhagen northbound towards Elsinore has been chosen is being used for the trials. This is the first of several roads on the Danish state road network to receive a special climate-friendly asphalt, as part of the development of pavements that reduce emissions from road traffic. This type of asphalt has been developed over the last decade and is the
  • Bridging the River Tisza
    February 7, 2012
    The Hungarian government has been investing heavily in extending and improving the country's motorway and trunk road network.
  • Innovative, flexible bridge formwork systems
    February 14, 2012
    Innovative formwork systems have been used to construct a variety of bridge structures. Patrick Smith reports. As part of the work on Germany's new A4 autobahn near Eisenach, the contracting joint venture awarded the formwork contract for two of the three viaducts to Doka. What makes this assignment so special to the company is that although the two steel composite bridges each have very different cross-sections, the JV is using the same overslung composite forming carriage to pour the carriageway slabs of