Skip to main content

Danish SolarFuture builds solar facility by Öresund Bridge

Solar cell panels worth around €270,000 will produce energy for the Øresund Bridge that connects Denmark and Sweden. Danish companies SolarFuture and Solarpark DK have been awarded the contract to install 1,500m² solar panels near the toll station of the Øresund Bridge. The three-year agreement is with Øresundsbro Konsortiet - the Danish-Swedish company that owns and operates the Øresund Bridge. The panel will generate around 4% of the power to operate the bridge, including deck lighting and
January 10, 2018 Read time: 2 mins

Solar cell panels worth around €270,000 will produce energy for the Øresund Bridge that connects Denmark and Sweden.

Danish companies SolarFuture and Solarpark DK have been awarded the contract to install 1,500m² solar panels near the toll station of the Øresund Bridge.

The three-year agreement is with Øresundsbro Konsortiet - the Danish-Swedish company that owns and operates the Øresund Bridge.

The panel will generate around 4% of the power to operate the bridge, including deck lighting and building interior lighting at an estimated annual saving of close to €27,000. There will also be an estimated CO2 reduction of 85tonnes.

Eventually, solar power could supply around 10% of energy with solar power, said Bengt Hergart, property director at Øresundsbro Konsortiet.

Solar panels will be placed between the northern and southern side of the toll station and at least 3m from the traffic lane, behind the railing and light columns - close to both the motorway and the railway.

The Øresund, which opened in 2000, is a road-rail bridge-tunnel structure running across and under the Øresund strait from the Danish capital Copenhagen to Malmö in Sweden. The road and rail runs along an 8km cable-stayed bridge to an artificial island where it then enters a 4km-long tunnel.

The cable-stayed bridge features two 204m-high pylons supporting the 490m-long bridge span across the Flinte Channel. The motorway runs on the upper level while the railway runs underneath.

Most bridge structures including the piers and spans were built on land and towed into position on barges. Only the pylons were cast in situ. The Øresund is operated by both countries and was designed by Danish engineering firm COWI along with main architect George KS Rotne.

Related Content

  • VIDEO: Drone for Fehmarnbelt tunnel
    August 1, 2025
    Dane Grace, one of the world's most talented drone pilots, has flown his drone over the German and Danish construction sites for the Fehmarnbelt Tunnel, set to be the world’s longest immersed tunnel.
  • New study suggests Fehmarn Belt payback close to 50 years
    October 9, 2015
    A study by Danish consultant Hans Schjær-Jacobsen has shown that the payback period for the proposed Fehmarn Belt Fixed Link tunnel project between Denmark and Germany will be close to 50 years. This is a decade longer than estimated by the developers of the project which focusses on a 17km immersed tunnel, the study noted. The Fehmarn Belt Fixed Link will connect the German island of Fehmarn with the Danish island of Lolland. The 17km tunnel, including two railway tunnels, two motorway tunnels and an
  • Mersey Gateway Project reaches half-way point across the Mersey
    March 10, 2017
    The Mersey Gateway project in England has passed a significant milestone, with over half of the main bridge deck stretching across the River Mersey. Work to install stay cables on the main bridge also passed a key point, with installation of the 31st 150m long cable – the halfway point for stay cable installations on the pylon. When complete, 146 stay cables will support the 1km-long reinforced concrete bridge, with a combined load-bearing weight of more than 53,000tonnes. “We’re now more than 50
  • Pre-stressed bridge decks use modular formwork system
    July 9, 2012
    Imaginative formwork, often using modular components, is helping to shape some challenging bridges worldwide. Patrick Smith reports Traffic volumes in and around Prague have swollen massively in recent years, pushing the existing road network to the limits of its capacity. To permanently ease congestion in the Czech capital's centre, a multi-lane orbital motorway is under construction as a high capacity bypass for central Prague and to link up all the motorways and other major highways radiating from the ci