Skip to main content

Workzone vests get wired for sound, thanks to Virginia Tech university

Researchers at Virginia Tech university in the United States have put small radio sensors on or inside vests to allows cars to “talk” to one another, roadside infrastructure, and personal electronics such as mobile phones. If a collision is about to occur between a vehicle and a worker, the vest can warn the worker in a matter of seconds about the impending crash. Likewise, the motorist will receive a dashboard notification.The instantaneous alert is possible by short-range communication, according to a sta
December 11, 2015 Read time: 4 mins
Safety can be improved for onsite personnel in workzones
Researchers at Virginia Tech university in the United States have put small radio sensors on or inside vests to allows cars to “talk” to one another, roadside infrastructure, and personal electronics such as mobile phones

If a collision is about to occur between a vehicle and a worker, the vest can warn the worker in a matter of seconds about the impending crash. Likewise, the motorist will receive a dashboard notification.The instantaneous alert is possible by short-range communication, according to a statement by Virginia Tech.

“Any warning we can give them is better than no warning at all,” said Kristen Hines a doctoral student with the Bradley Department of Electrical and Computer Engineering. She is helping lead the combined effort of the College of Engineering and the Virginia Tech Transportation Institute.

The InZoneAlert vest remains an ongoing project and it has gone through numerous design changes. As of 2014, the vest portion of the alert system – which incorporates GPS tracking – that evolved from the size of a backpack-sized apparatus to that of a mobile phone. Upcoming versions could shrink it to the size of a pack of gum, the university said.
The vest or similar clothing with GPS-oriented dedicated short-range radio could have wide-ranging uses. “There are a lot of roadside workers who are not necessarily on construction sites but who could benefit from such a warning,” said Tom Martin, a professor with the College of Engineering.

Martin also researches “smart” clothing – wearable items with woven-in electronic components that can provide data such as a person’s movements. “There are folks monitoring the status of interstates, officers [and] first responders. Anyone who has to be out on the interstate with passing vehicles could benefit from an individualised warning.”

Martin started the effort in 2013 with then-doctoral student Jason Forsyth, who graduated in 2015 with a doctorate in computer engineering and is on faculty at York College of Pennsylvania.

The team wants to make the InZoneAlert vest user-friendly, part of a worker’s established uniform or equipment. The alert itself also must be distinct but not jarring.

“We don’t want to add to their cognitive load,” said Martin. “We don’t want to give them false alarms. We just want to give them a few seconds ' notice to know that someone is coming toward them and then give them a chance to get out of the way.”

In early tests of the InZoneAlert system, Martin said that predictions for potential vehicle-worker conflicts met a 90% success rate.

Various alerts are being tested and must work within a loud, tough, dirty and busy construction site.
“One possible way to get over that challenge is to use other things that the worker is using,” said Hines. “Let’s take the hearing protection, for example. The auditory alert could be placed inside of the hearing protection in a work zone, which means that it can always be heard over everything. Another possible way is to include other alerting methods, such as tactile alerts that use a person’s sense of touch. This ranges from vibrations or your clothing suddenly shrinking on you [or] cuffs compressing.”

The Virginia Tech Transportation Institute will be key in testing the vest in real-world demonstrations that involve highway-speed traffic. The institute already is spearheading work on vehicle-to-vehicle to vehicle-to-infrastructure communication at the Virginia Smart Road in Blacksburg, as well as the Interstate 64 corridor near Fairfax, Virginia. Closed-course tests would occur on the Smart Road.

“We have been simulating the concept in demos done on the Smart Road along with other applications such as animal detection, collision avoidance, etc.,” said Andy Alden, a researcher with the institute.

Funding for the project has so far come from inside the College of Engineering, the Virginia Tech Transportation Institute and Virginia Tech’s Institute for Creativity, Arts, and Technology, of which Martin is associate director.

Related Content

  • Evonik’s Degaroute paves the way at Istanbul Technical University
    July 21, 2017
    Ari Gate and the entrance to Ayazağa Campus are now pedestrian- and bicycle-friendly as part of Istanbul Technical University’s ongoing Green Campus project. The university is more than 250 years old and has five campuses spread throughout the centre of historic Istanbul, Turkeys former capital and now a financial and transport hub. The network of campuses and myriad buildings make it extremely difficult for staff and students to get around quickly and efficiently so they must resort to a vehicle, either ca
  • US proposes distraction guidelines for automakers
    March 14, 2012
    US Transportation Secretary Ray LaHood yesterday announced the first-ever federally proposed guidelines to encourage automobile manufacturers to limit the distraction risk for in-vehicle electronic devices.
  • Smarter road crossings with the Smart Crossing from Umberllium
    November 15, 2017
    Urban design technologists Umbrellium said that it has created the Smart Crossing, a pedestrian crossing that adjusts its lines and colours according to the situation. The crossing, a prototype, was developed for UK insurance company Direct Line in response to research which highlighted the dangers for people, cyclists and vehicle drivers at pedestrian crossings. Research by Road Safety Analysis, a designer of highway safety programmes and services, noted that there were more than 29,000 casualties on or n
  • Caterpillar sets out the four key issues for its customers and spotlights seatbelt safety first
    April 7, 2025

    The four key concerns of our customers are: “Safety, optimising processes, labour shortages, and productivity, “ says Caterpillar.

    According to the company’s senior VP Herwig Peschl, Cat is integrating a range of products, technologies, and services to address these concerns.

    The construction and mining giant says that it wants to help its customers get the most out of their fleets and products.