Skip to main content

Workzone vests get wired for sound, thanks to Virginia Tech university

Researchers at Virginia Tech university in the United States have put small radio sensors on or inside vests to allows cars to “talk” to one another, roadside infrastructure, and personal electronics such as mobile phones. If a collision is about to occur between a vehicle and a worker, the vest can warn the worker in a matter of seconds about the impending crash. Likewise, the motorist will receive a dashboard notification.The instantaneous alert is possible by short-range communication, according to a sta
December 11, 2015 Read time: 4 mins
Safety can be improved for onsite personnel in workzones
Researchers at Virginia Tech university in the United States have put small radio sensors on or inside vests to allows cars to “talk” to one another, roadside infrastructure, and personal electronics such as mobile phones

If a collision is about to occur between a vehicle and a worker, the vest can warn the worker in a matter of seconds about the impending crash. Likewise, the motorist will receive a dashboard notification.The instantaneous alert is possible by short-range communication, according to a statement by Virginia Tech.

“Any warning we can give them is better than no warning at all,” said Kristen Hines a doctoral student with the Bradley Department of Electrical and Computer Engineering. She is helping lead the combined effort of the College of Engineering and the Virginia Tech Transportation Institute.

The InZoneAlert vest remains an ongoing project and it has gone through numerous design changes. As of 2014, the vest portion of the alert system – which incorporates GPS tracking – that evolved from the size of a backpack-sized apparatus to that of a mobile phone. Upcoming versions could shrink it to the size of a pack of gum, the university said.
The vest or similar clothing with GPS-oriented dedicated short-range radio could have wide-ranging uses. “There are a lot of roadside workers who are not necessarily on construction sites but who could benefit from such a warning,” said Tom Martin, a professor with the College of Engineering.

Martin also researches “smart” clothing – wearable items with woven-in electronic components that can provide data such as a person’s movements. “There are folks monitoring the status of interstates, officers [and] first responders. Anyone who has to be out on the interstate with passing vehicles could benefit from an individualised warning.”

Martin started the effort in 2013 with then-doctoral student Jason Forsyth, who graduated in 2015 with a doctorate in computer engineering and is on faculty at York College of Pennsylvania.

The team wants to make the InZoneAlert vest user-friendly, part of a worker’s established uniform or equipment. The alert itself also must be distinct but not jarring.

“We don’t want to add to their cognitive load,” said Martin. “We don’t want to give them false alarms. We just want to give them a few seconds ' notice to know that someone is coming toward them and then give them a chance to get out of the way.”

In early tests of the InZoneAlert system, Martin said that predictions for potential vehicle-worker conflicts met a 90% success rate.

Various alerts are being tested and must work within a loud, tough, dirty and busy construction site.
“One possible way to get over that challenge is to use other things that the worker is using,” said Hines. “Let’s take the hearing protection, for example. The auditory alert could be placed inside of the hearing protection in a work zone, which means that it can always be heard over everything. Another possible way is to include other alerting methods, such as tactile alerts that use a person’s sense of touch. This ranges from vibrations or your clothing suddenly shrinking on you [or] cuffs compressing.”

The Virginia Tech Transportation Institute will be key in testing the vest in real-world demonstrations that involve highway-speed traffic. The institute already is spearheading work on vehicle-to-vehicle to vehicle-to-infrastructure communication at the Virginia Smart Road in Blacksburg, as well as the Interstate 64 corridor near Fairfax, Virginia. Closed-course tests would occur on the Smart Road.

“We have been simulating the concept in demos done on the Smart Road along with other applications such as animal detection, collision avoidance, etc.,” said Andy Alden, a researcher with the institute.

Funding for the project has so far come from inside the College of Engineering, the Virginia Tech Transportation Institute and Virginia Tech’s Institute for Creativity, Arts, and Technology, of which Martin is associate director.

Related Content

  • Ensuring screening efficiency can cut costs
    September 30, 2013
    Major Wire Industries, a leading manufacturer of screen media, has determined a numbers of methods to tackle common screening problems Screen media inefficiencies can reduce product quality, production and profit as much as a poorly performing screen box. Screen media modifications cost less than screen box upgrades and can provide major benefits for little outlay. If material is coming off the end of the deck, instead of passing through the screen cloth there are several possible problems. It could be that
  • 3D Repo develop virtual reality safety app for Balfour Beatty
    April 18, 2017
    3D Repo is working with contractors Balfour Beatty and Vinci and the UK roads agency Highways England to deploy a virtual reality simulation program for safety training. 3D Repo, a spin-off from University College London, develops open-source software for building information modelling in the cloud. More than 40 different 3D file formats are decomposed and federated in the company’s big data repository.
  • Flanders' Drive demonstrates smart mobility with Traficon technology
    April 25, 2012
    Last week, the Flemish press witnessed a demonstration in Lommel, Belgium, presenting how Traficon technology can collaborate with so-called smart vehicles. The demonstration was part of the Vision project of Flanders’ Drive, the research centre for the automotive industry, which collaborates with a consortium of companies to research and test vehicle-to-infrastructure communication. In the successful demonstration a Traficon C-Walk pedestrian detector was combined with a smart vehicle, which was equipped w
  • Construction sector's quiet revolution for digital worksites
    February 8, 2017
    The digital worksite topped the agenda at this year’s CECE congress. David Arminas reports from the Czech capital Prague* Europe’s equipment manufacturers and their clients are truly in an age of transformation driven by an increasing move towards the digital worksite. Because this transformation is so deep, there looms big challenges for the entire sector and its supply chain, noted Bernd Holz, president of the CECE – Committee for European Construction Equipment, Europe’s umbrella organisation for