Skip to main content

Foiled by foliage from Biotecture

Richard Sabin, managing director of Biotecture*, details how living walls provide an innovative solution for reducing air pollution and improve air quality along congested urban highways.
June 27, 2022 Read time: 4 mins
Plants land a punch on pollution: Southampton’s Millbrook Flyover has 10 of Biotecture’s freestanding living wall structures (image courtesy Biotecture)

As air pollution continues to impact public health, there’s an increasing drive for local government and highway authorities to minimise roadside pollution caused by vehicles. Campaigning for public transport and investing in infrastructure are effective ways to offset air pollution. However, putting these solutions in place can be hindered through a lack of physical space and high implementation costs.

Often overlooked in the fight against air pollution are natural resources such as vegetation. These can provide an aesthetically pleasing, cost-effective and undisruptive solution to tackling the problem.

In response to a study on air quality, the English coastal city of Southampton devised a strategy to reduce air pollution. We worked closely with Southampton and Balfour Beatty’s Living Places – the contractor’s division that focuses on highway maintenance, street lighting and public space designs - to create the UK’s first highway living walls. Millbrook Flyover, one the city’s busiest roads, saw the installation of 10 of our freestanding living wall structures.

The city’s Millbrook Roundabout is a key entrance to the city and nearby container port, the city council was looking to find a solution that would be a welcoming feature on the roundabout while also mitigating air pollution. The wall’s intricate design features nearly 11,300 plants covering around 260m² and has improved both the appearance of the flyover and the quality of the air around it by offsetting pollution from the 36,000 vehicles that use the roundabout daily.

Our choice of species was informed by testing carried out by Imperial College London on a living wall we had previously installed. Each wall houses 17 species of carefully chosen plants, such as Euonymus (spindle or burning bush), Convolvulus cneorum (shrubby bindweed) and Acorus gramineus (grass-leaf sweet flag), all of which capture particulate matter. The selected plants were chosen for their surface density which allows them to better capture toxins, gases and pollutants – many of which are approximately 1/25th of the diameter of a human hair.

In addition to improving air quality for local residents and visitors, the living walls also benefit wildlife. The dense foliage attracts and provides refuge for bees, butterflies, ladybirds and lacewings that are essential for a well-balanced local ecosystem. Living walls also offer vital nesting space, shelter and food for birds and insects, increasing the biodiversity along highways.

A key part of the brief from the council was to mask the concrete support columns of the flyover. However, this had to be done in a way that was not fixed directly to the flyover, so as to allow for the concrete supports to be easily accessed for future structural inspections.  In collaboration with Balfour Beatty Structural Engineering Consultants, we designed a bespoke, arrowhead-shaped design on a freestanding steel frame upon which the living wall panels were mounted.

Each section of living wall is made up of two 2.2m-wide living walls attached at a 35-degree angle to form a shallow V-shape. The BioPanel living wall system is attached to the steel frame which is bolted to a reinforced concrete foundation. Each living wall is offset approximately 2.5m from the face of a column to avoid touching any part of the flyover’s infrastructure; this allows for maintenance inspections. If maintenance is required the living walls are simply unbolted from their base and temporarily re-located.

The actual design that the plants make up is based upon the shape of the local River Itchen, much of which itself is classified as a UK national Site of Special Scientific Interest and a Special Area of Conservation, making it home to a number of protected species. We felt that this design reflected the importance of the sea and water in Southampton’s identity.

Despite the size and complexity of the project, the installation of the living wall was completed in only 15 days. This pioneering collaboration between Biotecture, Balfour Beatty and Southampton City Council is the first of its kind in the UK, setting a precedent for managing roadside pollution in other parts of the country. The project was awarded a prestigious National Gold Green Apple Award by The Green Organisation, a UK-based international environment group that recognises environmental best practice in both public and private sectors.

*Biotecture is based near Chichester in southeast England. The company designs, installs and maintains sustainable vertical green infrastructure and provides full after-care. Biotecture’s living wall systems can be used for large-scale and small-scale projects and, apart from highway infrastructure, they can be used on general construction sites and on any building in any situation.

For more information on companies in this article

Related Content

  • Bertha ends her Alaskan Way voyage in Seattle
    December 21, 2017
    Seattle's State Route 99 viaduct is coming down. David Arminas was on site. Bertha, the world’s largest diameter earth pressure balance tunnel boring machine, with a cutterhead diameter of 17.5m, is no more. Her 2.7km journey underneath the waterfront area of Seattle finished on April 4 and the power went off for the last time on an extraordinary TBM that had finally completed an extraordinary job. “A small sidewalk job would have had more impact on city traffic than we have had,” says Brian Russell a v
  • Italy's strategic tunnel link
    August 21, 2012
    The world's largest tunnelling machine is completing Italy's important road connection between Bologna and Florence - Adrian Greeman reports For just under a decade a huge programme of highway construction has been underway in the mountainous region between Bologna and Florence, realigning a section of the A1 highway nearly 70km long. The new section, through major tunnels and across high viaducts, will greatly increase capacity on Italy's most important highway.
  • ERIC 2016: What shape the ‘Smart Road’?
    February 7, 2017
    Optimism about the future of highways worldwide abounded at the inaugural European Road Infrastructure Conference (ERIC) in Leeds, UK Around 500 delegates passed through the varied sessions during the three-day event at the Royal Armouries Museum in the northern English city of Leeds. They came away with many visions of what a motorway and road could look like. But what speakers at the event - co-organised by the Brussels-based European Union Road Federation (ERF) and the UK’s Road Safety Markings Ass
  • Pilosio and CMC Ravenna collaborate on Cornubia Interchange
    June 4, 2019
    The South African branch of the Italian construction company CMC di Ravenna again teamed up with formwork specialist Pilosio to take advantage of Pilosio's solutions. This time it was for construction of a new bridge in the city of Durban, a project named N2/Cornubia Interchange. The overpass will streamline traffic by linking the Umhlanga industrial zone with the Cornubia new development area Tongat. Cornubia is a multibillion rand integrated settlement near Umhlanga, north of Durban, in KwaZulu Natal,