Skip to main content

FlexiPole installed on famous Clifton Bridge

A number of Ritherdon passively-safe electroluminescent (EL) FlexiPole signpost systems have now been installed on the historic Clifton Suspension Bridge in Bristol, west England. Completed in 1864, the Bridge was originally designed to provide a safe crossing across a gorge for horse-drawn traffic; the chosen method of transport in the 19th century. However it now accommodates 21st century commuter traffic with in excess of 11,000 vehicles crossing the Bridge every day. The custodians of Clifton Suspension
April 11, 2013 Read time: 2 mins

A number of Ritherdon passively-safe electroluminescent (EL) FlexiPole signpost systems have now been installed on the historic Clifton Suspension Bridge in Bristol, west England.

Completed in 1864, the Bridge was originally designed to provide a safe crossing across a gorge for horse-drawn traffic; the chosen method of transport in the 19th century. However it now accommodates 21st century commuter traffic with in excess of 11,000 vehicles crossing the Bridge every day.

The custodians of Clifton Suspension Bridge, who are backed by the Heritage Lottery Fund, expressed a need for an illuminated ‘keep left’ signpost that would be functional, durable and eco-friendly, but also fit in visually with the surroundings of the World Heritage Site.

5614 Ritherdon FlexiPoles were said to be chosen to grace the tolls at the entrance to the famous Bridge for their minimalistic appearance and low visual impact on the heritage of the site. They were also preferred, says Ritherdon, due to their EL material being more visible than any alternative light sources, especially in the adverse weather conditions that the Clifton Suspension Bridge is prone to, due to the height of the crossing over the Avon Gorge.

EL is described by Ritherdon as an optical and electrical phenomenon in which a material emits light in response to an electric current passed through it and, as it uses organic phosphor, is said by Ritherdon to be the most efficient light source on the planet.

Ritherdon claim that deploying an EL sign will save €118.95 [£100] a year and reactivate maintenance for a typical 300mm illuminated sign, with an additional saving of €17.84 [£15]-per-annum on energy which equates to 60kg of CO2. The Lancashire county, north-west England-based firm says potential savings are much greater for larger signs.

For more information on companies in this article

Related Content

  • Bridge engineering worldwide
    July 1, 2013
    Guy Woodford looks at vital bridge construction, repair and inspection projects in China, Europe, North America and Australia The Heron Road Bridge in Ottawa, Ontario in Canada is a vital link within the City’s transport network, as it crosses the Rideau River, which divides the east and west parts of the City. Constructed in 1966-1967, the Heron Road Bridge is approximately 275m long and includes six lanes.
  • Transylvanian motorway breaks new ground in engineering
    July 11, 2012
    Normally in hilly ground, we would use the excavated soil from the cuttings to fill the valleys," says Bogdan Sgarcitu, External Affairs Manager of construction company Bechtel. "But on this stretch the clay-like soil cannot be compacted, so we've had to use many more piles than normal: in just three months we installed more than 500, some drilled as deep as 24m. We've also had to transport millions of tonnes of materials over some less-than-perfect infrastructure."
  • More tenders for the Lower Thames Crossing
    April 2, 2021
    The winners will build 23km of road connecting to what will be the UK’s longest road tunnel.
  • TRL delivers its vision
    July 31, 2012
    The UK's world-renowned TRL (Transport Research Laboratory) is celebrating its 75th birthday this year, and the objective of its work has not changed In 1938 Richard Stradling, director, wrote that "the objective of all the research work at RRL [now TRL] is to accumulate that body of scientific knowledge which is an essential factor in the economical and efficient construction and maintenance of our roads. Practical application of the results must be the aim throughout." While TRL's remit today is far more