Skip to main content

Upgrade for Medieval bridge

One of the most demanding and challenging impressed current cathodic protection (ICCP) projects ever undertaken by specialist main contractor Concrete Repairs Ltd (CRL) is being carried out on Bideford Longbridge in County Devon, UK. The 24-span medieval masonry arch bridge spans 190m over the tidal estuary of the River Torridge.
February 29, 2012 Read time: 2 mins
Bideford Longbridge, the 24-span medieval masonry spans 190m over the River Torridge
One of the most demanding and challenging impressed current cathodic protection (ICCP) projects ever undertaken by specialist main contractor 3416 Concrete Repairs Ltd (CRL) is being carried out on Bideford Longbridge in County Devon, UK.

The 24-span medieval masonry arch bridge spans 190m over the tidal estuary of the River Torridge. Each span varies from 6.5m to 11m, and this is thought to be because the masonry bridge was built around the original timber bridge whose spans were dictated by the length of timber available at the time. During its lifetime the bridge has been widened a number of times to accommodate the changing nature and density of traffic flows. The last widening was completed in 1928 when reinforced concrete cantilever sections were added to each side of the masonry arches.

Following a structural assessment in 2006, Devon County Council identified 21 weakened cantilevers and the onset of corroding steel reinforcement, caused as a result of high chloride levels and lack of concrete cover. A 3tonne weight restriction was applied while various long term renovation solutions to safeguard the bridge were considered.

CRL was awarded the council contract to repair the concrete cantilevers in September 2008. The £2m project (E2.34 million) is particularly testing due to the combination of ICCP anode systems comprising mixed metal oxide coated titanium mesh and discrete mixed metal oxide coated titanium tubular anodes to ensure a uniform current distribution.

At the same time, the partial demolition and reconstruction of reinforced concrete elements is being carried out and a new underbridge lighting system is being installed, all of which is taking place from restricted scaffold access and in a tidal environment. The project is scheduled for completion in October 2009.

For more information on companies in this article

Related Content

  • Italian highway bridge and tunnel link
    February 21, 2022
    A major Italian highway bridge and tunnel link is under construction.
  • Champlain Bridge set to open by end of year, says SNC-Lavalin
    May 14, 2018
    The Canadian city’s replacement Champlain Bridge will open on schedule at the end of the year. Montreal, one of Canada’s largest cities, will have a well-earned Christmas present in December when the new Champlain Bridge opens after 42 months of construction. The new bridge, part of a six-lane 6km corridor including roads, is being built alongside the original bridge over the Saint Lawrence River and Seaway canal system. The new bridge, 3.4km long, runs from the île des Soeurs to Brossard, immediately dow
  • Repairs to piers on Italian viaduct
    July 17, 2012
    Hydrodemolition played a vital role in the repairs and strengthening of the multi-span Rio Verde Viaduct, one of the tallest in Europe, that carries the busy dual two-lane A15/E33 Autostrada della Cisa over a steep-sided valley in the municipality of Pontremoli, north-west Italy. Conjet hydrodemolition equipment was used to remove damaged concrete from the faces of the viaduct's rectangular concrete piers, which rise up to 136m from the valley bottom to the steel deck. A new and thicker concrete skin was th
  • Repairs to piers on Italian viaduct
    July 17, 2012
    Hydrodemolition played a vital role in the repairs and strengthening of the multi-span Rio Verde Viaduct, one of the tallest in Europe, that carries the busy dual two-lane A15/E33 Autostrada della Cisa over a steep-sided valley in the municipality of Pontremoli, north-west Italy. Conjet hydrodemolition equipment was used to remove damaged concrete from the faces of the viaduct's rectangular concrete piers, which rise up to 136m from the valley bottom to the steel deck. A new and thicker concrete skin was th