Skip to main content

Upgrade for Medieval bridge

One of the most demanding and challenging impressed current cathodic protection (ICCP) projects ever undertaken by specialist main contractor Concrete Repairs Ltd (CRL) is being carried out on Bideford Longbridge in County Devon, UK. The 24-span medieval masonry arch bridge spans 190m over the tidal estuary of the River Torridge.
February 29, 2012 Read time: 2 mins
Bideford Longbridge, the 24-span medieval masonry spans 190m over the River Torridge
One of the most demanding and challenging impressed current cathodic protection (ICCP) projects ever undertaken by specialist main contractor 3416 Concrete Repairs Ltd (CRL) is being carried out on Bideford Longbridge in County Devon, UK.

The 24-span medieval masonry arch bridge spans 190m over the tidal estuary of the River Torridge. Each span varies from 6.5m to 11m, and this is thought to be because the masonry bridge was built around the original timber bridge whose spans were dictated by the length of timber available at the time. During its lifetime the bridge has been widened a number of times to accommodate the changing nature and density of traffic flows. The last widening was completed in 1928 when reinforced concrete cantilever sections were added to each side of the masonry arches.

Following a structural assessment in 2006, Devon County Council identified 21 weakened cantilevers and the onset of corroding steel reinforcement, caused as a result of high chloride levels and lack of concrete cover. A 3tonne weight restriction was applied while various long term renovation solutions to safeguard the bridge were considered.

CRL was awarded the council contract to repair the concrete cantilevers in September 2008. The £2m project (E2.34 million) is particularly testing due to the combination of ICCP anode systems comprising mixed metal oxide coated titanium mesh and discrete mixed metal oxide coated titanium tubular anodes to ensure a uniform current distribution.

At the same time, the partial demolition and reconstruction of reinforced concrete elements is being carried out and a new underbridge lighting system is being installed, all of which is taking place from restricted scaffold access and in a tidal environment. The project is scheduled for completion in October 2009.

For more information on companies in this article

Related Content

  • How Florida paved the way for availability payments in the US
    November 21, 2014
    New financing models have been used to deliver key transport links in the US - * Patrick D Harder and Brandon J Davis Florida Department of Transportation’s (FDOT) public-private partnership (PPP) programme has made impressive progress, setting precedents for US transportation planning and funding. On March 26th 2014, FDOT opened 16km of new reversible express lanes as part of its US$1.8 billion I-595 Corridor Roadway Improvements Project. Just a few months later, on August 3rd 2014, FDOT opened twin tunnel
  • Washington DC’s historic bridge replacement project
    June 11, 2019
    The project to replace a historic bridge in US capital Washington DC is providing major challenges for its builders - Mike Woof writes
  • Towers of power: California’s Gerald Desmond Bridge Replacement
    May 8, 2019
    Challenging ground conditions meant a design rethink - and some engineering firsts - for California’s Gerald Desmond Bridge Replacement Project* The Port of Long Beach on Terminal Island south of Los Angeles is the second-busiest container port in the US. It handles around 15% of all imported goods, much of it with Asia. As the Port of Long Beach was growing in importance over the past half century, the 51-year-old Gerald Desmond Bridge has faithfully been delivering thousands of daily commuters to wo
  • Clever electric solution for embankment stabilisation
    August 28, 2013
    A highly innovative solution for road embankment stabilisation has helped save costs by up to 30% over conventional techniques. Balfour Beatty Mott MacDonald has used electrical current to stabilise embankments on a busy UK dual carriageway, avoiding disruption to motorists, cutting carbon by 40% and costs by 30%, and producing zero waste When slope failure was detected on embankments carrying the popular A21 dual carriageway, Balfour Beatty Mott MacDonald pioneered a novel technique to tackle the prob