Skip to main content

Upgrade for Medieval bridge

One of the most demanding and challenging impressed current cathodic protection (ICCP) projects ever undertaken by specialist main contractor Concrete Repairs Ltd (CRL) is being carried out on Bideford Longbridge in County Devon, UK. The 24-span medieval masonry arch bridge spans 190m over the tidal estuary of the River Torridge.
February 29, 2012 Read time: 2 mins
Bideford Longbridge, the 24-span medieval masonry spans 190m over the River Torridge
One of the most demanding and challenging impressed current cathodic protection (ICCP) projects ever undertaken by specialist main contractor 3416 Concrete Repairs Ltd (CRL) is being carried out on Bideford Longbridge in County Devon, UK.

The 24-span medieval masonry arch bridge spans 190m over the tidal estuary of the River Torridge. Each span varies from 6.5m to 11m, and this is thought to be because the masonry bridge was built around the original timber bridge whose spans were dictated by the length of timber available at the time. During its lifetime the bridge has been widened a number of times to accommodate the changing nature and density of traffic flows. The last widening was completed in 1928 when reinforced concrete cantilever sections were added to each side of the masonry arches.

Following a structural assessment in 2006, Devon County Council identified 21 weakened cantilevers and the onset of corroding steel reinforcement, caused as a result of high chloride levels and lack of concrete cover. A 3tonne weight restriction was applied while various long term renovation solutions to safeguard the bridge were considered.

CRL was awarded the council contract to repair the concrete cantilevers in September 2008. The £2m project (E2.34 million) is particularly testing due to the combination of ICCP anode systems comprising mixed metal oxide coated titanium mesh and discrete mixed metal oxide coated titanium tubular anodes to ensure a uniform current distribution.

At the same time, the partial demolition and reconstruction of reinforced concrete elements is being carried out and a new underbridge lighting system is being installed, all of which is taking place from restricted scaffold access and in a tidal environment. The project is scheduled for completion in October 2009.

For more information on companies in this article

Related Content

  • BarrierGuard 800 keeps key U.S. bridge open
    April 11, 2013
    BarrierGuard 800 from Highway Care is said to be preventing the closure of a vital highway bridge in the United States. As a critical part of the US national infrastructure, the Sarah Mildred Long Bridge services the Portsmouth Naval Shipyard. The link allows the transporting of spent nuclear fuel and heavy freight bound to and from the naval shipyard, with an average of 15,000 vehicles per day crossing this structurally deficient bridge. The railing along the Sarah Mildred Long Bridge had begun to deterio
  • Mexico viaduct complete with ULMA formwork
    February 9, 2018
    ULMA developed a comprehensive solution for the construction project of the Interlomas Viaduct, México. Forming part of Mexico City’s transportation infrastructure development plan, this viaduct is 227m long and connects the residential and commercial area Interlomas with the Naucalpan-Toluca highway. ULMA designed a solution fully tailored to meet the pace and needs of the client: gantry falsework for two 59m outer spans, and a CVS Form Carrier for the central span of 108m. ULMA’s engineering team combi
  • A1 Upgrade section opens in the UK
    March 27, 2019
    A key section of the UK’s important A1 route is now open to traffic.
  • Mersey Gateway Project reaches half-way point across the Mersey
    March 10, 2017
    The Mersey Gateway project in England has passed a significant milestone, with over half of the main bridge deck stretching across the River Mersey. Work to install stay cables on the main bridge also passed a key point, with installation of the 31st 150m long cable – the halfway point for stay cable installations on the pylon. When complete, 146 stay cables will support the 1km-long reinforced concrete bridge, with a combined load-bearing weight of more than 53,000tonnes. “We’re now more than 50