Skip to main content

Repairs to piers on Italian viaduct

Hydrodemolition played a vital role in the repairs and strengthening of the multi-span Rio Verde Viaduct, one of the tallest in Europe, that carries the busy dual two-lane A15/E33 Autostrada della Cisa over a steep-sided valley in the municipality of Pontremoli, north-west Italy. Conjet hydrodemolition equipment was used to remove damaged concrete from the faces of the viaduct's rectangular concrete piers, which rise up to 136m from the valley bottom to the steel deck. A new and thicker concrete skin was th
July 17, 2012 Read time: 3 mins
The Conjet modified feedbeam and nozzle selectively removed damaged concrete
Hydrodemolition played a vital role in the repairs and strengthening of the multi-span Rio Verde Viaduct, one of the tallest in Europe, that carries the busy dual two-lane A15/E33 Autostrada della Cisa over a steep-sided valley in the municipality of Pontremoli, north-west Italy.

186 Conjet hydrodemolition equipment was used to remove damaged concrete from the faces of the viaduct's rectangular concrete piers, which rise up to 136m from the valley bottom to the steel deck. A new and thicker concrete skin was then applied.

The 960m long twin steel deck viaduct, supported on eight reinforced concrete hollow pillars, is a major structure in the link between Parma and La Spezia on Italy's Mediterranean coast, 100km south of Genova.

The spectacular viaduct was opened in 1975, but inspection by maintenance engineers showed the bridge piers were suffering from extensive calcium chloride decay, forcing the Italian Highways Authority and the Highway Engineering Department of Cisa to carry out extensive repairs and strengthening.

The specialist hydrodemolition contractor SEI-Idrojet, working for the main viaduct repair contractor A.B.C.Construczioni, carried out the concrete removal on one pier at a time. The repairs were performed from a special, purpose-built cradle and working platform that wrapped round all four sides of the piers (21m long, 8.5m wide at the base and tapering to 2.5 wide at the apex). The ends of the platform were adjustable to compensate for the changing width of the piers.

Conjet modified a standard robot feedbeam to fit onto and run along a rack on the inner sides of the platform, and a Conjet computer control unit, also mounted on the platform, was used to control the feedbeam and integral jetting nozzle.

A Conjet 345-400kW Powerpack at ground level provided the high pressure water at 1,000bar and flow of 200litres/min to the feedbeam's nozzle. The feedbeam and nozzle, travelling back and forth along the platform's rack, selectively removed damaged concrete to a depth of 70mm and below any exposed reinforcing. The process continued on one face of a pier as the platform was slowly raised to the top.

After concrete removal from one face, the platform was lowered and the Conjet feedbeam moved to another side of the platform for the process to be repeated on all four faces. SEI-Idrojet operations and site manager Enrico Mariotti was responsible for devising and controlling the hydrodemolition process.

On completion of concrete removal another team followed on fixing additional reinforcement in stages to all sides of the tapering pier. Shuttering panels 1.8m high were then fixed round all faces to support a new 220mm thick skin of self-compacting concrete pumped into the formwork from ground level. After the concrete had set the formwork was removed and repositioned for the next 1.8m lift for the process to be repeated to the top of the pier.

On completion of repairing and strengthening a pier with an additional layer of concrete, the working platform was dismantled and re-erected on the next and then subsequent piers for the hydrodemolition and concrete repair process to be repeated.

For more information on companies in this article

Related Content

  • Advances in geosynthetics boost soil stabilisation
    March 13, 2012
    Special fabrics are often used in civil engineering works, including highways, to make soil stronger Geosynthetics have been used in roadway construction for thousands of years with natural materials being mixed with soil to improve quality and stability. While today's products are much more sophisticated, the principles are the same. For example, when used with soil, geotextiles (permeable fabrics) can filter, separate, reinforce, protect, or drain, and they are often made from polypropylene or polyester,
  • The Preston Western Distributor
    September 7, 2023
    Costain, as main contractor for the Preston Western Distributor project, was involved from the earliest stages, thanks to the UK’s Early Contractor Involvement approach. The project was delivered on time and on budget to the benefit of the local environment, local businesses and the region’s workforce. David Arminas reports*
  • Thin surface whitetopping for busy roads
    April 5, 2017
    In the US, considerable experience has been gained with thin white-topping (TWT), with the technique now being used in other countries as well. In the US hundreds of km of TWT is being paved every year, much of it across the mid-western states. A variation of white-topping is being used in Oregon to replace badly rutted asphalt truck lanes on primarily long uphill grades with durable, continuously reinforced concrete pavement (CRCP). Oregon has carried out several of these concrete inlay projects over the
  • Italian highway viaduct collapses
    November 27, 2019
    Heavy rain is thought to be the cause for the collapse of a section of highway viaduct in Italy.