Skip to main content

Repairs to piers on Italian viaduct

Hydrodemolition played a vital role in the repairs and strengthening of the multi-span Rio Verde Viaduct, one of the tallest in Europe, that carries the busy dual two-lane A15/E33 Autostrada della Cisa over a steep-sided valley in the municipality of Pontremoli, north-west Italy. Conjet hydrodemolition equipment was used to remove damaged concrete from the faces of the viaduct's rectangular concrete piers, which rise up to 136m from the valley bottom to the steel deck. A new and thicker concrete skin was th
July 17, 2012 Read time: 3 mins
The Conjet modified feedbeam and nozzle selectively removed damaged concrete
Hydrodemolition played a vital role in the repairs and strengthening of the multi-span Rio Verde Viaduct, one of the tallest in Europe, that carries the busy dual two-lane A15/E33 Autostrada della Cisa over a steep-sided valley in the municipality of Pontremoli, north-west Italy.

186 Conjet hydrodemolition equipment was used to remove damaged concrete from the faces of the viaduct's rectangular concrete piers, which rise up to 136m from the valley bottom to the steel deck. A new and thicker concrete skin was then applied.

The 960m long twin steel deck viaduct, supported on eight reinforced concrete hollow pillars, is a major structure in the link between Parma and La Spezia on Italy's Mediterranean coast, 100km south of Genova.

The spectacular viaduct was opened in 1975, but inspection by maintenance engineers showed the bridge piers were suffering from extensive calcium chloride decay, forcing the Italian Highways Authority and the Highway Engineering Department of Cisa to carry out extensive repairs and strengthening.

The specialist hydrodemolition contractor SEI-Idrojet, working for the main viaduct repair contractor A.B.C.Construczioni, carried out the concrete removal on one pier at a time. The repairs were performed from a special, purpose-built cradle and working platform that wrapped round all four sides of the piers (21m long, 8.5m wide at the base and tapering to 2.5 wide at the apex). The ends of the platform were adjustable to compensate for the changing width of the piers.

Conjet modified a standard robot feedbeam to fit onto and run along a rack on the inner sides of the platform, and a Conjet computer control unit, also mounted on the platform, was used to control the feedbeam and integral jetting nozzle.

A Conjet 345-400kW Powerpack at ground level provided the high pressure water at 1,000bar and flow of 200litres/min to the feedbeam's nozzle. The feedbeam and nozzle, travelling back and forth along the platform's rack, selectively removed damaged concrete to a depth of 70mm and below any exposed reinforcing. The process continued on one face of a pier as the platform was slowly raised to the top.

After concrete removal from one face, the platform was lowered and the Conjet feedbeam moved to another side of the platform for the process to be repeated on all four faces. SEI-Idrojet operations and site manager Enrico Mariotti was responsible for devising and controlling the hydrodemolition process.

On completion of concrete removal another team followed on fixing additional reinforcement in stages to all sides of the tapering pier. Shuttering panels 1.8m high were then fixed round all faces to support a new 220mm thick skin of self-compacting concrete pumped into the formwork from ground level. After the concrete had set the formwork was removed and repositioned for the next 1.8m lift for the process to be repeated to the top of the pier.

On completion of repairing and strengthening a pier with an additional layer of concrete, the working platform was dismantled and re-erected on the next and then subsequent piers for the hydrodemolition and concrete repair process to be repeated.

For more information on companies in this article

Related Content

  • New EU-Russian highway connection
    February 18, 2013
    Among the forests and lakes of Finland, one of Europe's newest motorway links is being built as a Green highway linking Europe to Russia - Adrian Greeman reports The road eastwards from Finland's capital Helsinki, along the north coast of the Gulf of Finland, has not carried heavy traffic volumes, at least until recent times. Highway seven as it is designated locally, or E18 in European nomenclature, is partly motorway but in some sections still dual carriageway or even just a single lane each way, finishin
  • New Angolan bridge offers improved connectivity
    September 30, 2013
    Drivers in Angola are benefiting from a bridge that spans the Catumbela River, taking the place of an old structure that had proven not fit for purpose. The US$35 million cable stayed bridge is located in the highway between Benguela and Lobito, around 7km from Angola’s Atlantic coast and is one of a series of new infrastructure developments in the country. Angola suffered a long period of war that impacted on its people and infrastructure. The war resulted in severe damage to the country’s road system alon
  • Brisbane’s new airport link is an engineering success
    April 12, 2013
    Financial troubles for Brisbane's new Airport Link overshadow its construction success – Adrian Greeman writes. Political argument and legal dispute is likely to rage for some time yet over the bankruptcy of Australian road operator BrisConnect, which went into receivership this February with A$3 billion in debt. Toll paying users for its new Airport Link have been less than half the predicted numbers since it opened in July last summer. But if its nancial engineering is being questioned, the same is not t
  • Turkey’s important new tunnel will improve transport links
    May 18, 2016
    Major advances in tunnelling will allow cars to travel underneath the Bosphorus sea channel in Turkey's Istanbul next year when its third road link is opened, writes Adrian Greeman. The Bosphorus is redolent with history and strategic significance. As one of the world's most significant sea connections, linking the landlocked Black Sea to the Marmara Sea and the Mediterranean beyond, it has been vitally important for trade and crucial for military access. It is also one of the biggest obstacles for land tra