Skip to main content

Quick to install embankment support

Technology from Tensar played a vital role along the Dishforth-Leeming section of the North Yorkshire A1 improvement work in northern England where new carriageways are being built adjacent to the existing in-use highway.
February 17, 2012 Read time: 2 mins
Technology from 340 Tensar played a vital role along the Dishforth-Leeming section of the North Yorkshire A1 improvement work in northern England where new carriageways are being built adjacent to the existing in-use highway.

By using a Tensartech TR2 Wall solution to create a temporary structure while raising a below grade section, the 2435 Carillion/2567 Morgan Sindall joint venture contractors are saving time and helping to minimise traffic disruption.

The existing 150m section of the A1 road either side of the Butcher House Bridge is up to 10m below the final required grade of the new motorway. An earth retaining structure with a near vertical face was required to support the new dual three-lane carriageway, which would allow the traffic to be switched to it while the old section was filled.

The conventional technique using extensive sheet piling along the embankment and for the bridge abutments to relieve lateral thrust would have been time consuming, and access for the equipment could have disrupted traffic flow.

Tensar developed a quick-to-install reinforced earth solution. With minimal disturbance to vehicles it temporarily supported the new south-bound embankment, bridge wing walls and abutments.

The contractor explained that as a temporary sacrificial structure, this was by far the best option and less expensive than other methods available.

The solution comprised compacted fill reinforced with layers of Tensar's uniaxial geogrid, securely connected to steel mesh facing units to form a 100m length of the 85˚ earth retaining structure up to 152 3M high; site won fill was used for this section.

For the bridge abutments and wing walls, a 26m length of vertical faced TR2 face, using imported granular fill and uniaxial geogrids, was built up to 9.5m. At either end of the embankment, a 45˚ slope was constructed using Tensartech.

For more information on companies in this article

Related Content

  • Geosynthetic drainage technology developments
    June 13, 2012
    An innovative solution to providing vital, low-impact surface water control for one of Britain’s largest local authority road schemes is said to have been recently achieved using Hydro International’s (HI) Hydro Vortex Drop Shaft  ow control technology. The new 7km bypass built by Costain at Church Village, near Pontypridd, South Wales, required careful planning to minimise its effect on the countryside and the local environment. Rhondda Cynon Taff Council needed to bypass Church Village to reduce traf c
  • Raised dual carriageway reduces congestion
    February 21, 2012
    A new raised dual carriageway to bypass the historic centre of the City of Wroclaw in south-east Poland will give access to the new Miejski Stadium in time for its role in the UEFA Euro 2012 football finals.
  • Innovative reinforcement for weak roads
    May 9, 2012
    An innovative solution was put forward to support slip roads on a Dutch motorway. Patrick Smith reports. The 2010 opening of the A7 motorway extension on the southern ring road of the city of Sneek, The Netherlands, brings an end to local traffic misery. By using innovative Tensar Geocell Foundation Mattress technology over weak estuarine clay, MNO-Vervat Noord, the main contractor, constructed a key junction and its slip roads in weeks instead of months, with considerable cost savings.
  • Innovative reinforcement for weak roads
    April 10, 2012
    An innovative solution was put forward to support slip roads on a Dutch motorway. Patrick Smith reports The 2010 opening of the A7 motorway extension on the southern ring road of the city of Sneek, The Netherlands, brings an end to local traffic misery. By using innovative Tensar Geocell Foundation Mattress technology over weak estuarine clay, MNO-Vervat Noord, the main contractor, constructed a key junction and its slip roads in weeks instead of months, with considerable cost savings. The conversion