Skip to main content

PERI's tall order in Mexico

The Baluarte Bridge (Puente Baluarte), part of a major highway project, ranks among the most outstanding infrastructure projects ever constructed in Mexico.
February 14, 2012 Read time: 3 mins
The Puente Baluarte's two-complex-designed pylons are being constructed using PERI ACS self-climbing technology
The Baluarte Bridge (Puente Baluarte), part of a major highway project, ranks among the most outstanding infrastructure projects ever constructed in Mexico.

The 1,124m long cable-stayed bridge will span a 390m deep ravine when completed in 2012, and its dimensions make it the world's third highest bridge. With a main span of 520m, nine piers and two pylons support the 20m wide superstructure, being built in a mountainous region on the border between the states of Durango and Sinaloa in north-west Mexico. It is part of a new highway that will form the single fast connection between the Pacific coast and the interior, making driving safer than on the existing parallel single track, and halving the journey time between the towns of Durango und Mazatlán.

The ravine on the Baluarte River is the most challenging hurdle along the route, which also features several reinforced concrete beam bridges (eight over 90m high) and 63 tunnels.

298 PERI planned and supplied a cost-effective formwork and scaffolding concept for construction of the different bridge piers. The 917 ACS self-climbing formwork used for the pylons allows crane-independent climbing in all weather conditions, which accelerates progress.

At 169m, P5 is the highest pylon and the top of its opposite P6 ends 13m below this. The largest cross section at the foot of the pylon is 18m x 8.56m. In the carriageway centre it widens to about 31.3m, and the piers then taper upwards and are 8m x 4.1m at the top. The pylon legs are not only inclined but also feature different cross sections along the complete height.

For the construction of this complex geometry, PERI developed a self-climbing solution on the basis of its ACS system. The ACS V (variable) was used for the forward and reverse-inclined external walls. The platforms of this climbing scaffold can be continuously adjusted to match the angle of inclination, which means that horizontal working levels are always available.

The variable VARIO GT 24 girder wall formwork is being used on the climbing scaffold. The PERI concept permits the construction site team to quickly adapt the formwork to suit the requirements of each concreting section and thus accurately construct the pylons. At the same time, the proven PERI Fin-Ply formlining guarantees high quality surface finishes with which around 50 to 70 uses are possible.

Construction of the pylons is carried out using a total of 46 or 49 concreting sections with variable concreting heights of between 3.28m and 3.9m.

The foreland piers have been designed as double piers, and vary (according to the shape of the terrain) in height up to a maximum of 145m. They were also constructed using VARIO GT 24 girder wall formwork.

A majority of the surfaces could be formed with standard panel formwork while for the tight inner areas PERI planned project-specific elements. These were accurately adapted and pre-mounted to match geometrical and static requirements as well as being delivered on a just-in-time basis to the construction site.

The assembly of the 5.1m high elements with only four SRZ waler lines allows the required concreting speed of 2m/hour, and on the pier exteriors, CB 240 climbing brackets support the VARIO elements.

Cross members with a height of 4m connect the supports of the double piers, and TRIO panel formwork forms the side formwork, while MULTIFLEX slab formwork serves to shape the underside of the members. High load-bearing GT 24 formwork girders are used as the main and cross beams.

A PERI UP Rosett scaffold construction carries the member formwork during construction.

For more information on companies in this article

Related Content

  • Emergent markets key for formwork sector growth
    May 21, 2014
    Central and south-east Europe are hotbeds for new highway infrastructure projects utilising cutting-edge formwork solutions, while a number of leading formwork manufacturers are also looking at emergent markets for growth. Guy Woodford reports Travelling between Hungary’s capital Budapest and Southern Dalmatia now takes less time thanks to the Pan-European Corridor Vc – European route 73. Numerous tunnels and bridges are erected along the 397km stretch of the European route 73 through Bosnia owing to the
  • Framework solutions speed bridge construction
    February 24, 2012
    Framework plays a key role in construction of bridges and other major infrastructure works – Mike Woof writes Speeding construction processes can help reduce costs considerably and the latest formwork solutions can provide significant benefits in this regard. In many projects the use of standardized and modular formwork solutions can play a key role, reducing the planning and systems required for bridge building work.
  • Innovative formwork solution to bridge construction
    February 20, 2012
    Innovative solutions are being applied to the construction of bridge structures as Patrick Smith reports. RMD Kwikform Iberica has engineered and supplied specialist formwork and falsework for construction of the much-needed Monteporreiro Viaduct in northern Spain. The viaduct will connect Monteporreiro with the Benedictine Monastery of San Bieito Lérez on the other side of the river, and in the process will ease congestion in the nearby town of Pontevedra, diverting some 5,000 vehicles/day.
  • PERI’s balancing act at the Harpe Bru Bridge in Norway
    May 24, 2016
    Plans for the European Route E6 expansion in Norway include the 320m-long Harpe Bru Bridge over the Gudbrandsdalen Lågen River, at Sør-Fron in Oppland province. For the superstructure, PERI civil engineering technology experts developed a balanced cantilevered solution based on the VARIOKIT Engineering Construction Kit. Statens vegvesen, Norway’s agency for public road building, selected an extradosed cable-stayed bridge design – the first such bridge in Norway. It combines the load-bearing behaviour