Skip to main content

PERI's tall order in Mexico

The Baluarte Bridge (Puente Baluarte), part of a major highway project, ranks among the most outstanding infrastructure projects ever constructed in Mexico.
February 14, 2012 Read time: 3 mins
The Puente Baluarte's two-complex-designed pylons are being constructed using PERI ACS self-climbing technology
The Baluarte Bridge (Puente Baluarte), part of a major highway project, ranks among the most outstanding infrastructure projects ever constructed in Mexico.

The 1,124m long cable-stayed bridge will span a 390m deep ravine when completed in 2012, and its dimensions make it the world's third highest bridge. With a main span of 520m, nine piers and two pylons support the 20m wide superstructure, being built in a mountainous region on the border between the states of Durango and Sinaloa in north-west Mexico. It is part of a new highway that will form the single fast connection between the Pacific coast and the interior, making driving safer than on the existing parallel single track, and halving the journey time between the towns of Durango und Mazatlán.

The ravine on the Baluarte River is the most challenging hurdle along the route, which also features several reinforced concrete beam bridges (eight over 90m high) and 63 tunnels.

298 PERI planned and supplied a cost-effective formwork and scaffolding concept for construction of the different bridge piers. The 917 ACS self-climbing formwork used for the pylons allows crane-independent climbing in all weather conditions, which accelerates progress.

At 169m, P5 is the highest pylon and the top of its opposite P6 ends 13m below this. The largest cross section at the foot of the pylon is 18m x 8.56m. In the carriageway centre it widens to about 31.3m, and the piers then taper upwards and are 8m x 4.1m at the top. The pylon legs are not only inclined but also feature different cross sections along the complete height.

For the construction of this complex geometry, PERI developed a self-climbing solution on the basis of its ACS system. The ACS V (variable) was used for the forward and reverse-inclined external walls. The platforms of this climbing scaffold can be continuously adjusted to match the angle of inclination, which means that horizontal working levels are always available.

The variable VARIO GT 24 girder wall formwork is being used on the climbing scaffold. The PERI concept permits the construction site team to quickly adapt the formwork to suit the requirements of each concreting section and thus accurately construct the pylons. At the same time, the proven PERI Fin-Ply formlining guarantees high quality surface finishes with which around 50 to 70 uses are possible.

Construction of the pylons is carried out using a total of 46 or 49 concreting sections with variable concreting heights of between 3.28m and 3.9m.

The foreland piers have been designed as double piers, and vary (according to the shape of the terrain) in height up to a maximum of 145m. They were also constructed using VARIO GT 24 girder wall formwork.

A majority of the surfaces could be formed with standard panel formwork while for the tight inner areas PERI planned project-specific elements. These were accurately adapted and pre-mounted to match geometrical and static requirements as well as being delivered on a just-in-time basis to the construction site.

The assembly of the 5.1m high elements with only four SRZ waler lines allows the required concreting speed of 2m/hour, and on the pier exteriors, CB 240 climbing brackets support the VARIO elements.

Cross members with a height of 4m connect the supports of the double piers, and TRIO panel formwork forms the side formwork, while MULTIFLEX slab formwork serves to shape the underside of the members. High load-bearing GT 24 formwork girders are used as the main and cross beams.

A PERI UP Rosett scaffold construction carries the member formwork during construction.

For more information on companies in this article

Related Content

  • Advances in tunneling machines coming to market
    November 19, 2015
    A diverse array of new tunnelling technologies will help boost productivity and cut project costs, while boosting quality - Mike Woof writes The worldwide market for tunnelling projects continues to be strong, with a series of major projects underway or planned for the future. These good market conditions have helped fuel research and development in new tunnelling equipment, designed to be more productive, more efficient and more reliable and able to deliver a higher quality of work. Drilling and blas
  • Kilsaran power paves with Vögele
    July 31, 2012
    Kilsaran, a leading Irish contractor, building materials supplier and producer of concrete products, has completed construction of 11,000m² of hard standing at its first dedicated mortar plant using Vögele's most powerful wheeled paver. The plant in Brownstown, County Kildare, will produce a variety of mortars, including bagged products, for distribution throughout Ireland. The Vögele 1803-2 is one of four such machines operated by the company, and it complements a range of plant, including Hamm compaction
  • New Wear Crossing cables fully installed and tensioned to 50%
    September 21, 2017
    Structural engineering company VSL International has installed all 28 cable stays of England’s New Wear Crossing and stressed them to 50% of their design load. The next stage of stressing the cables will happen next month and be to 100% of design load. This will allow the construction team to adjust and tension them just enough to lift the bridge deck off the blue steel temporary supports that were constructed in the river to take the weight of the structure.
  • Cost-effective tunnel waterproofing
    February 14, 2012
    The strong market for shotcreting technology has led BASF to hold a workshop for waterproofing specialists. The firm's latest system can be used to provide a permanent waterproof single-shell tunnel lining based on sprayed concrete and double-bonded waterproofing membrane.