Skip to main content

PERI fills gap in Greek market

A team of Greek and German PERI engineers have developed a comprehensive formwork and scaffolding solution for the T4 bridge on the A7 motorway in Greece. The 160km long A7 connects Kalamata in the south to Corinth in the northwest of the Peloponnese peninsula. On one stretch of the motorway a 390m long arched bridge – known as T4 – is being used to close the gap between Paradisia and Tsakona. Set for completion in early 2014, two-thirds of the 22m wide bridge superstructure will be suspended on a steel arc
February 19, 2013 Read time: 3 mins
The VARIOKIT heavy-duty shoring towers being used on the T4 bridge on the A7 motorway in Greece are transferring a combined 2,400tonnes load
A team of Greek and German 298 PERI engineers have developed a comprehensive formwork and scaffolding solution for the T4 bridge on the A7 motorway in Greece.

The 160km long A7 connects Kalamata in the south to Corinth in the northwest of the Peloponnese peninsula. On one stretch of the motorway a 390m long arched bridge – known as T4 – is being used to close the gap between Paradisia and Tsakona. Set for completion in early 2014, two-thirds of the 22m wide bridge superstructure will be suspended on a steel arch and realised using the steel composite construction method. For the northern bridge section, a pre-stressed concrete superstructure variant was selected which features a twin-cell hollow box cross-section.

The supporting element of the motorway bridge is a huge, almost 30m high inclined twin-pillar pier with an asymmetric V-shape. This serves as an intermediate support for the in-situ concreted carriageway. It also serves as a support and starter section for the steel arch. Engineers from PERI and Greek colleagues devised a cost-effective plan for constructing the pier structure, the reinforced concrete superstructure and the temporary support for the bridge during the entire building project

The chosen two modular construction systems combine with each other to transfer the high loads safely into the ground. With help of the PERI UP Rosett Flex modular scaffold system, forming a spatial load-bearing structure for the piers and superstructure formwork, a gradual increasing up to the total support height of over 20m was achieved to the rear and upwards respectively. By means of 25, 50 and 75cm long ledgers, the 150cm basic grid is said by PERI to have been adapted to suit the geometric and static requirements extremely flexibly. This allowed the polygonal 32° to 36° shallow pitched inclined piers on both sides of the bridge to be constructed in eight segments, each 4.5m long.

In addition to the PERI UP scaffold construction being used, the VARIOKIT engineering construction kit, in particular, is said to offer standardised system solutions for tunnel, bridge and civil engineering projects. Thus, trusses consisting of rentable standard elements support the obliquely-positioned VARIO GT 24 girder formwork and transfer the formwork and concreting loads of the inclined piers safely into the scaffolding.

The VARIOKIT modular construction system also forms the basis for the heavy-duty shoring. In the connecting area between the cast-in-place bridge and steel arch, two 17m high, 42-leg VARIOKIT heavy-duty shoring towers are used to accommodate the high loads – throughout the entire construction period until the inherent load-bearing capacity is reached. Each of the two towers has to carry loads of 1,200tonnes and, due to the long utilisation time, has to cater for high earthquake-induced as well as horizontal loads. Here, PERI engineers combined four standard towers, each with a 2m by 2m axis dimension, by means of several bundled 37.5cm additional frames (number depended on the load concentration) to form two power packages. Only rentable system components and construction-compliant, type-tested connection means were said by PERI to be used for this.

For more information on companies in this article

Related Content

  • Peri climbs high at INTERMAT 2015 with its civil engineering technology
    April 24, 2015
    Peri’s Variokit heavy-duty truss girder system has been designed specifically for tunnel and bridge construction to reach those hard-to-get places. The heavy-duty truss girder complements the Variokit heavy-duty shoring tower. Peri took into account the load-bearing capacity of the tower as well as the challenging requirements of everyday construction work.
  • Emergent markets key for formwork sector growth
    May 21, 2014
    Central and south-east Europe are hotbeds for new highway infrastructure projects utilising cutting-edge formwork solutions, while a number of leading formwork manufacturers are also looking at emergent markets for growth. Guy Woodford reports Travelling between Hungary’s capital Budapest and Southern Dalmatia now takes less time thanks to the Pan-European Corridor Vc – European route 73. Numerous tunnels and bridges are erected along the 397km stretch of the European route 73 through Bosnia owing to the
  • Arched bridge challenge over the Oparno
    February 29, 2012
    For environmental reasons planners decided in favour of the challenging task of constructing a 13-field arched highway bridge over the Oparno Valley in the Bohemian area of the Czech Republic. The 258m bridge, whose reinforced concrete arch has a span of 135m, straddles the valley without any bridge piers, transferring the loads in the form of compressive forces into the foundations.
  • Formwork developments in bridge construction
    February 23, 2012
    Major infrastructure projects worldwide are relying on innovative formwork solutions for speed and safety as Patrick Smith reports. The 970m long cable-stayed Golden Ears Bridge crossing the Fraser River in Vancouver, Canada, is the core element of a six-lane, highway project near the Canadian west coast.