Skip to main content

Doka rises to the challenge on Turkey’s Eyiste Viaduct

Formwork specialist Doka recently rose to the challenge on Turkey’s Eyiste Viadust, the country’s highest bridge with piers up to 155m tall. The Eyiste Viaduct will be part of a route between Central Anatolia and Turkey’s Mediterranean region, shortening travel time between the cities of Konya and Alanya. Cantilever forming travellers and Doka’s automatic climbing formwork Xclimb 60 were part of the construction solution. The viaduct is nearly 1.4km long and carried by two abutments and eight piers, stret
June 4, 2019 Read time: 3 mins
The 1.4km Eyiste Viaduct has two abutments and eight piers, stretching across the Göksu River near Konya
Formwork specialist Doka recently rose to the challenge on Turkey’s Eyiste Viadust, the country’s highest bridge with piers up to 155m tall.


The Eyiste Viaduct will be part of a route between Central Anatolia and Turkey’s Mediterranean region, shortening travel time between the cities of Konya and Alanya. Cantilever forming travellers and 203 Doka’s automatic climbing formwork Xclimb 60 were part of the construction solution.

The viaduct is nearly 1.4km long and carried by two abutments and eight piers, stretching across the Göksu River near the city of Konya. The superstructure of the balanced cantilever bridge has nine spans, the longest being 170m. The piers vary from 31-155m high.

Work started in March 2017 and the structure is scheduled to be opened for traffic in June 2020. The bridge’s superstructure is being constructed by the balanced cantilever method, which is ideal for long spans and has established itself as the method of choice for bridge-building projects in Turkey. A total of 130,000m³ of concrete and 28,000tonnes of steel - excluding prestressing cables - will eventually be used.

Differing pier heights and the long deck cause differences in the way external influences affect the structure. The CSiBridge software was used to model the viaduct in 3D. This was to assess the bridge’s ability to handle vertical and lateral forces and the results incorporated into planning.

The simulations indicated that the shortest pier of 31m would be most affected by seismic forces. The long bridge deck and the tallest pier at155m, by contrast, would be more susceptible to creep, shrinkage and temperature effects (CST) and to wind loads.

Based on these results, only the four tallest piers are being cast monolithically with the deck sections. The deck remains supported on longitudinally sliding bearings, providing flexibility and reducing seismic effects.

The balanced cantilevering superstructure sections of the new Eyiste Viaduct are constructed toward each other from pier head to pier head. The four cantilever forming travellers work in pairs, so that the horizontal forces acting on the bridge piers are always in equilibrium.

The travellers can handle varying section lengths from 3-5m and concrete weights up to 250tonnes. The forming carriages speed up progress on the build and allow for variations in segment geometry. Slide bearings secure the travellers against unwanted travelling on longitudinal gradients.

Fully enclosed working platforms on all levels and hydraulic test loading of the rear carriage anchorages prior to each pouring operation help ensure safety at work.

The bridge piers were formed using six paired sets of Doka’s automatic climbing formwork Xclimb 60. The system climbs hydraulically, anchored to the structure at all times by guiding shoes. Because it is guided on the structure at all times, the system can still be climbed even in windy conditions.

For more information on companies in this article

Related Content

  • Geosynthetic solution for ground preparation
    April 16, 2012
    Naue Geosynthetics says its Secugrid offers a solution for a host of ground preparation problems, and for use in reinforced retaining walls. Secugrid is a geogrid made from extruded monolithic flat bars with welded junctions, for soil reinforcement in earth, landfill and road construction as well as in hydraulic engineering applications. Among its benefits are said to be its high strength and low elongation thanks to the extruded elements. "The monolithic flat bars give it a robust construction, an
  • Oscillation presents an efficient alternative compaction method
    September 27, 2017
    Hamm pioneered the concept of compaction using oscillation rather than vibration and now offers a wide range of machines with this feature, both for soil and asphalt applications. The firm has developed a strong following for its oscillating compactor range, with many contractors now appreciating the benefit of this technology.
  • Doka’s UniKit is a quick way to support heavy concrete pours
    April 19, 2016
    Doka’s new UniKit is a modular shoring system for heavy civil engineering applications. Designed to be quick and easy to erect in a number of different configurations, UniKit provides a steel-girder like structure which can support loads from bridge deck or beam concrete pours. “It’s an efficient way to construct infrastructure without stopping existing infrastructure – such as roads – running underneath,” said Doka’s director of research and development Johann Peneder.
  • New version of world’s longest floating bridge
    August 12, 2014
    The creation of a new version of the world’s longest floating bridge in Seattle, in the US state of Washington, is among the world’s most eye-catching current bridge engineering projects. It is an impressive example of the health of the bridge replacement sector, particularly in the US, leaving it well placed for growth. Guy Woodford reports Already the world’s longest floating bridge at over 2,310m long, the Governor Albert D Rosellini-Evergreen Point Floating Bridge in Seattle in the United States is g