Skip to main content

Doka rises to the challenge on Turkey’s Eyiste Viaduct

Formwork specialist Doka recently rose to the challenge on Turkey’s Eyiste Viadust, the country’s highest bridge with piers up to 155m tall. The Eyiste Viaduct will be part of a route between Central Anatolia and Turkey’s Mediterranean region, shortening travel time between the cities of Konya and Alanya. Cantilever forming travellers and Doka’s automatic climbing formwork Xclimb 60 were part of the construction solution. The viaduct is nearly 1.4km long and carried by two abutments and eight piers, stret
June 4, 2019 Read time: 3 mins
The 1.4km Eyiste Viaduct has two abutments and eight piers, stretching across the Göksu River near Konya
Formwork specialist Doka recently rose to the challenge on Turkey’s Eyiste Viadust, the country’s highest bridge with piers up to 155m tall.


The Eyiste Viaduct will be part of a route between Central Anatolia and Turkey’s Mediterranean region, shortening travel time between the cities of Konya and Alanya. Cantilever forming travellers and 203 Doka’s automatic climbing formwork Xclimb 60 were part of the construction solution.

The viaduct is nearly 1.4km long and carried by two abutments and eight piers, stretching across the Göksu River near the city of Konya. The superstructure of the balanced cantilever bridge has nine spans, the longest being 170m. The piers vary from 31-155m high.

Work started in March 2017 and the structure is scheduled to be opened for traffic in June 2020. The bridge’s superstructure is being constructed by the balanced cantilever method, which is ideal for long spans and has established itself as the method of choice for bridge-building projects in Turkey. A total of 130,000m³ of concrete and 28,000tonnes of steel - excluding prestressing cables - will eventually be used.

Differing pier heights and the long deck cause differences in the way external influences affect the structure. The CSiBridge software was used to model the viaduct in 3D. This was to assess the bridge’s ability to handle vertical and lateral forces and the results incorporated into planning.

The simulations indicated that the shortest pier of 31m would be most affected by seismic forces. The long bridge deck and the tallest pier at155m, by contrast, would be more susceptible to creep, shrinkage and temperature effects (CST) and to wind loads.

Based on these results, only the four tallest piers are being cast monolithically with the deck sections. The deck remains supported on longitudinally sliding bearings, providing flexibility and reducing seismic effects.

The balanced cantilevering superstructure sections of the new Eyiste Viaduct are constructed toward each other from pier head to pier head. The four cantilever forming travellers work in pairs, so that the horizontal forces acting on the bridge piers are always in equilibrium.

The travellers can handle varying section lengths from 3-5m and concrete weights up to 250tonnes. The forming carriages speed up progress on the build and allow for variations in segment geometry. Slide bearings secure the travellers against unwanted travelling on longitudinal gradients.

Fully enclosed working platforms on all levels and hydraulic test loading of the rear carriage anchorages prior to each pouring operation help ensure safety at work.

The bridge piers were formed using six paired sets of Doka’s automatic climbing formwork Xclimb 60. The system climbs hydraulically, anchored to the structure at all times by guiding shoes. Because it is guided on the structure at all times, the system can still be climbed even in windy conditions.

For more information on companies in this article

Related Content

  • Mersey Gateway Project reaches half-way point across the Mersey
    March 10, 2017
    The Mersey Gateway project in England has passed a significant milestone, with over half of the main bridge deck stretching across the River Mersey. Work to install stay cables on the main bridge also passed a key point, with installation of the 31st 150m long cable – the halfway point for stay cable installations on the pylon. When complete, 146 stay cables will support the 1km-long reinforced concrete bridge, with a combined load-bearing weight of more than 53,000tonnes. “We’re now more than 50
  • Sunderland’s New Wear Crossing takes shape
    February 16, 2017
    The New Wear Crossing will be the first bridge to be built over the River Wear in Sunderland, UK, for more than 40 years Raising the bridge’s 100m-tall pylon promised to be a stunning visual sight, but also a tricky operation dictated by extremely variable local weather. World Highways went to press just before the operation, but not before the pylon had arrived by barge on January 7. It had completed a two-day crossing of the often unpredictable North Sea from the Belgian port of Ghent where it was f
  • Upgrade for Scottish road
    February 17, 2012
    Work is progressing on a £320 million (e385 million) project to upgrade a busy 18km stretch of the main A80 Glasgow-Stirling road in Scotland to motorway standard. The project, between the villages of Stepps and Haggs, is part of a massive infrastructure investment in Scotland's transport network, and construction work includes almost 8km of new dual-lane motorway and hard shoulders between
  • New bridge for old Russian city
    July 30, 2012
    Murom, one of Russia's best preserved old cities, is situated in the European part of the country, around 300km to the east of Moscow. The most important industry and economic activities are mechanical engineering along with timber and textiles. The location on the River Oka, a tributary of the Volga and thus an important waterway, as well as the good connections to important main roads and rail routes, are positive economic factors. It is near Murom that German formwork and scaffolding specialist PERI is p