Skip to main content

Doka rises to the challenge on Turkey’s Eyiste Viaduct

Formwork specialist Doka recently rose to the challenge on Turkey’s Eyiste Viadust, the country’s highest bridge with piers up to 155m tall. The Eyiste Viaduct will be part of a route between Central Anatolia and Turkey’s Mediterranean region, shortening travel time between the cities of Konya and Alanya. Cantilever forming travellers and Doka’s automatic climbing formwork Xclimb 60 were part of the construction solution. The viaduct is nearly 1.4km long and carried by two abutments and eight piers, stret
June 4, 2019 Read time: 3 mins
The 1.4km Eyiste Viaduct has two abutments and eight piers, stretching across the Göksu River near Konya
Formwork specialist Doka recently rose to the challenge on Turkey’s Eyiste Viadust, the country’s highest bridge with piers up to 155m tall.


The Eyiste Viaduct will be part of a route between Central Anatolia and Turkey’s Mediterranean region, shortening travel time between the cities of Konya and Alanya. Cantilever forming travellers and 203 Doka’s automatic climbing formwork Xclimb 60 were part of the construction solution.

The viaduct is nearly 1.4km long and carried by two abutments and eight piers, stretching across the Göksu River near the city of Konya. The superstructure of the balanced cantilever bridge has nine spans, the longest being 170m. The piers vary from 31-155m high.

Work started in March 2017 and the structure is scheduled to be opened for traffic in June 2020. The bridge’s superstructure is being constructed by the balanced cantilever method, which is ideal for long spans and has established itself as the method of choice for bridge-building projects in Turkey. A total of 130,000m³ of concrete and 28,000tonnes of steel - excluding prestressing cables - will eventually be used.

Differing pier heights and the long deck cause differences in the way external influences affect the structure. The CSiBridge software was used to model the viaduct in 3D. This was to assess the bridge’s ability to handle vertical and lateral forces and the results incorporated into planning.

The simulations indicated that the shortest pier of 31m would be most affected by seismic forces. The long bridge deck and the tallest pier at155m, by contrast, would be more susceptible to creep, shrinkage and temperature effects (CST) and to wind loads.

Based on these results, only the four tallest piers are being cast monolithically with the deck sections. The deck remains supported on longitudinally sliding bearings, providing flexibility and reducing seismic effects.

The balanced cantilevering superstructure sections of the new Eyiste Viaduct are constructed toward each other from pier head to pier head. The four cantilever forming travellers work in pairs, so that the horizontal forces acting on the bridge piers are always in equilibrium.

The travellers can handle varying section lengths from 3-5m and concrete weights up to 250tonnes. The forming carriages speed up progress on the build and allow for variations in segment geometry. Slide bearings secure the travellers against unwanted travelling on longitudinal gradients.

Fully enclosed working platforms on all levels and hydraulic test loading of the rear carriage anchorages prior to each pouring operation help ensure safety at work.

The bridge piers were formed using six paired sets of Doka’s automatic climbing formwork Xclimb 60. The system climbs hydraulically, anchored to the structure at all times by guiding shoes. Because it is guided on the structure at all times, the system can still be climbed even in windy conditions.

For more information on companies in this article

Related Content

  • Winning formula for formwork
    July 19, 2012
    An unusual application of formwork took place recently in France, while formwork using one particular engineering construction kit was used for the first time in Poland. Guy Woodford reports An 80m long wild game underpass is an innovative feature of the Route Nationale 88 (RN 88) expansion in south-west France. For construction of the arched underpass tunnel, a PERI tunnel formwork carriage using VARIOKIT engineering construction kit was used. Thanks to the equipment’s easy handling, along with pre-assembl
  • Innovative formwork solution to bridge construction
    February 20, 2012
    Innovative solutions are being applied to the construction of bridge structures as Patrick Smith reports. RMD Kwikform Iberica has engineered and supplied specialist formwork and falsework for construction of the much-needed Monteporreiro Viaduct in northern Spain. The viaduct will connect Monteporreiro with the Benedictine Monastery of San Bieito Lérez on the other side of the river, and in the process will ease congestion in the nearby town of Pontevedra, diverting some 5,000 vehicles/day.
  • Bridges in Sunderland and Poland are being slid into place
    February 6, 2017
    Sunderland sees a bridge slide into place and two bridges inch their way across a Polish highway Slowly but surely, a 2,500 tonne section of a new bridge deck was eased out from the banks of the River Wear near Sunderland in northern England. It now straddles the water, pointing towards the opposite bank which it will eventually reach after another sliding operation likely to take place next year. The project to build the New Wear Crossing is now halfway through with the first half of the steel deck b
  • Framework solutions speed bridge construction
    February 24, 2012
    Framework plays a key role in construction of bridges and other major infrastructure works – Mike Woof writes Speeding construction processes can help reduce costs considerably and the latest formwork solutions can provide significant benefits in this regard. In many projects the use of standardized and modular formwork solutions can play a key role, reducing the planning and systems required for bridge building work.