Skip to main content

Challenging viaduct construction

TRAFFIC VOLUMES on Gran Canaria, the third largest of the Canary Islands, have been swelling rapidly in recent years, not least because of the boom in tourism. Among the routes most affected is the 32km long northern motorway GC-2 between Las Palmas and Agaëte, which has reached the limits of its capacity.
March 2, 2012 Read time: 3 mins
The up to 100m tall main piers are characterised by a marked upward taper and were constructed using the Doka automatic climbing formwork SKE 50
Traffic volumes on Gran Canaria, the third largest of the Canary Islands, have been swelling rapidly in recent years, not least because of the boom in tourism.

Among the routes most affected is the 32km long northern motorway GC-2 between Las Palmas and Agaëte, which has reached the limits of its capacity. Owing to the mountainous terrain, most of the new road is being routed through tunnels and across viaducts. With an overall length of 432m, a height of up to 104m and a sizeable longitudinal gradient, Viaducto 5 (Viaducto De Guia Pagador) is by far the most challenging viaduct in this major motorway building project.

The contracting consortium of 980 OHL-García Álamo-Félix Santiago Melián opted for an all-in-one solution from 203 Doka, which came up with a technically sophisticated solution for constructing the massively sized pier heads. The consortium also turned to Doka for the high-performing automatic climbing formwork being used to build the four, up to 104m tall, bridge piers.

With access to the construction locations being so difficult and crane capacity being limited to 12tonnes, both the forming operations and the site logistics have had to be planned extremely carefully, with a resource-optimised construction workflow that is precisely coordinated right down to the last detail.

The pre-stressed, single-cell box girder superstructure of the Viaducto De Guia Pagador is being constructed in casting sections of up to 5.4m in length by two pairs of Doka
cantilever forming travellers (CFT) that have been modified. This is achieved economically by a simple extension of the vertical girder on the lower side. A telescopic inside formwork is used for adjusting to the varying cross-section.

A specially developed extra joint-reinforcing waling makes it unnecessary to cut back the massive steel walings of the top 50 large area formwork system section by section. According to Doka this concept is saving the contracting consortium more than 60% of the custom components that would otherwise be required.

All of 13m long, the massively sized pier heads are being constructed on a solution based on main support girders. This involves two parallel steel girders being placed in the longitudinal direction through box-outs in the top casting section of the hollow pier. On Viaducto 5, two 18m long and 1m high steel girders are being used for this purpose. They are cranelifted into the box-outs and pushed through the piers by a hydraulic cylinder. Next, a girder grille that includes the formwork for the bottom slab of the pier head is placed on the main support girders on either side of the pier. Access to the main support girders is provided by catwalks from the platforms fixed to the bridge pier. This allows the girder grilles to be erected in safety.

After the bottom slab has been cast, the transverse stiffeners, the webs and the deck slab are then cast using top 50 large area formwork elements. Following completion of the pier head, the cross-girders and the girder grilles can easily be hydraulically lowered and then lifted off the pier.

The two imposing main piers of the Viaducto De Guia Pagador are 102m and 87m tall (Piers 2 and 3 respectively), and were constructed using Doka's automatic climbing formwork SKE 50.

For more information on companies in this article

Related Content

  • Towers of power: California’s Gerald Desmond Bridge Replacement
    May 8, 2019
    Challenging ground conditions meant a design rethink - and some engineering firsts - for California’s Gerald Desmond Bridge Replacement Project* The Port of Long Beach on Terminal Island south of Los Angeles is the second-busiest container port in the US. It handles around 15% of all imported goods, much of it with Asia. As the Port of Long Beach was growing in importance over the past half century, the 51-year-old Gerald Desmond Bridge has faithfully been delivering thousands of daily commuters to wo
  • Germany's advanced bridge construction
    February 24, 2012
    The A98 single-lane motorway in Germany is being extended by a second pair of lanes. Work began in 2007 and required building a second bridge at Rheinfelden in the south-west of the country, parallel to the existing bridge, and identical in design and construction.
  • Peri’s formwork and shoring solution for the “East End Crossing”
    July 6, 2016
    Pylons almost 90m high are a striking feature of a new cable-stayed East End Crossing bridge over the Ohio River in Louisville, Kentucky state in the US The pylons are characterised by their complex shapes and massive legs and cross beams. Peri provided a comprehensive overall concept for its construction – consisting of a planning solution with perfectly matched formwork, climbing, shoring and scaffolding systems along with extensive on-site support. With a Peri solution, the construction crew were a
  • Forming iconic structures
    July 18, 2012
    Specially designed and constructed formwork is being used to create some iconic bridges worldwide The Golden Ears Bridge over the Fraser River will unite the municipalities of Richmond, New Westminister and Delta in the scenic British Columbia province of Canada. The bridge, part of a CAD$800 million (US$670 million) project, is an 'extra dosed' cable stayed bridge, which means the deck will be supported by both cables and the structure itself. This design reduces the overall height of the two towers as req