Skip to main content

Challenging viaduct construction

TRAFFIC VOLUMES on Gran Canaria, the third largest of the Canary Islands, have been swelling rapidly in recent years, not least because of the boom in tourism. Among the routes most affected is the 32km long northern motorway GC-2 between Las Palmas and Agaëte, which has reached the limits of its capacity.
March 2, 2012 Read time: 3 mins
The up to 100m tall main piers are characterised by a marked upward taper and were constructed using the Doka automatic climbing formwork SKE 50
Traffic volumes on Gran Canaria, the third largest of the Canary Islands, have been swelling rapidly in recent years, not least because of the boom in tourism.

Among the routes most affected is the 32km long northern motorway GC-2 between Las Palmas and Agaëte, which has reached the limits of its capacity. Owing to the mountainous terrain, most of the new road is being routed through tunnels and across viaducts. With an overall length of 432m, a height of up to 104m and a sizeable longitudinal gradient, Viaducto 5 (Viaducto De Guia Pagador) is by far the most challenging viaduct in this major motorway building project.

The contracting consortium of 980 OHL-García Álamo-Félix Santiago Melián opted for an all-in-one solution from 203 Doka, which came up with a technically sophisticated solution for constructing the massively sized pier heads. The consortium also turned to Doka for the high-performing automatic climbing formwork being used to build the four, up to 104m tall, bridge piers.

With access to the construction locations being so difficult and crane capacity being limited to 12tonnes, both the forming operations and the site logistics have had to be planned extremely carefully, with a resource-optimised construction workflow that is precisely coordinated right down to the last detail.

The pre-stressed, single-cell box girder superstructure of the Viaducto De Guia Pagador is being constructed in casting sections of up to 5.4m in length by two pairs of Doka
cantilever forming travellers (CFT) that have been modified. This is achieved economically by a simple extension of the vertical girder on the lower side. A telescopic inside formwork is used for adjusting to the varying cross-section.

A specially developed extra joint-reinforcing waling makes it unnecessary to cut back the massive steel walings of the top 50 large area formwork system section by section. According to Doka this concept is saving the contracting consortium more than 60% of the custom components that would otherwise be required.

All of 13m long, the massively sized pier heads are being constructed on a solution based on main support girders. This involves two parallel steel girders being placed in the longitudinal direction through box-outs in the top casting section of the hollow pier. On Viaducto 5, two 18m long and 1m high steel girders are being used for this purpose. They are cranelifted into the box-outs and pushed through the piers by a hydraulic cylinder. Next, a girder grille that includes the formwork for the bottom slab of the pier head is placed on the main support girders on either side of the pier. Access to the main support girders is provided by catwalks from the platforms fixed to the bridge pier. This allows the girder grilles to be erected in safety.

After the bottom slab has been cast, the transverse stiffeners, the webs and the deck slab are then cast using top 50 large area formwork elements. Following completion of the pier head, the cross-girders and the girder grilles can easily be hydraulically lowered and then lifted off the pier.

The two imposing main piers of the Viaducto De Guia Pagador are 102m and 87m tall (Piers 2 and 3 respectively), and were constructed using Doka's automatic climbing formwork SKE 50.

For more information on companies in this article

Related Content

  • Bridge formwork solutions complete big bridge picture
    July 2, 2014
    Advanced bridge formwork solutions are allowing contractors to complete vital major highway infrastructure projects covering Norway, Sweden, Estonia and Poland. Guy Woodford reports Building the Labbdalen bridges in Norway is a key feature of the E6 highway improvement programme. Main project contractor HÆHRE tasked RMD Kwikform and Teknikk with supplying a complete formwork and shoring solution that could tackle the challenging Norwegian terrain, whilst preserving the environment. Situated two hours
  • Special formwork solution for tricky Orinoco project
    April 24, 2013
    Taking a road and rail link across one of the biggest rivers in South America, together with its swamps and flood plain, calls for a new crossing of superlative dimensions. Two 135.5m pylons for the third bridge across the Orinoco River in Venezuela are taking shape with the Venezuelan government investing in the showcase project at Caicara del Orinoco. The bridge will have an overall length of 11.125km on completion, which is scheduled for 2015. The main bridge is 2.28km long, and the roadway is 55m above
  • Formwork innovations help bridge building
    July 7, 2015
    A series of formwork developments are helping with challenging bridge construction projects around the world - Mike Woof writes In the Polish city of Krakow, a cost-effective cable stayed bridge is being constructed using a balanced cantilever technique. The current expansion of the Krakow metropolitan railway network (KST) requires the building of a crossing of the Krakow-Plaszow railway junction. Ensuring that daily rail operations remained unaffected during the construction of the 252m long crossing w
  • Superlative formwork’s global appeal
    April 25, 2013
    The latest formwork solutions are enabling some tough bridge-building projects to be delivered in South America and Europe, while the world’s largest construction equipment show is seeing the merits of other cutting-edge formwork. Guy Woodford reports. Taking a road and rail link across one of South America’s largest rivers, together with its swamps and floodplain, calls for a new crossing of superlative dimensions. Two 135.5m pylons for the third bridge across the Orinoco River in Venezuela are taking shap