Skip to main content

Advanced structural monitoring from Teleco

Teleco’s novel SHM602 system has been developed in partnership with the Interdepartmental Centre for Buildings and Construction at Bologna University and offers real-time monitoring of structural integrity of structures. This system operates on the basis of dynamic models obtained by means of identification techniques from accelerometric measures performed on the structure to be monitored. It relies on advanced measure, filtering and identification techniques and allows a real-time remote access to all data
January 5, 2016 Read time: 2 mins
8293 Teleco’s novel SHM602 system has been developed in partnership with the Interdepartmental Centre for Buildings and Construction at Bologna University and offers real-time monitoring of structural integrity of structures. This system operates on the basis of dynamic models obtained by means of identification techniques from accelerometric measures performed on the structure to be monitored. It relies on advanced measure, filtering and identification techniques and allows a real-time remote access to all data, including acceleration and temperature.

Advanced features of the SHM602 allow filtering and modelling operations to be performed inside every measuring unit, the use of robust and reliable MEM sensors. The use of a digital bus allows non-invasive and reliable implementation on large structures where traditional analogue systems would require expensive and invasive radial connections and auxiliary hardware to limit signal deterioration over distance. s that must be

The smart architecture of the connection network allows the construction of global models suitable for detecting possible problems in the points where the sensors have been allocated and also in interconnecting substructures. Another important task performed by the computational resources allocated inside every sensing unit concerns the real-time monitoring of the correct performance of every sensor and the automatic exclusion of faulty sensors.

The SHM602 is a modular system and can be configured as required to optimise cost and performance. The SHM602 includes software packages allowing the configuration of the sensor network, data acquisition and storage, and real-time modal analysis of the monitored structures. It can operate both on structures affected by factors such as vehicle traffic, wind or seismic events.

A significant test on the SHM602 has been recently performed on the Manhattan Bridge, New York City, as part of a joint project between Columbia and Bologna Universities. The unit I said to be robust and able to cope with long use in difficult applications.

For more information on companies in this article

Related Content

  • Rigorous testing for high performance materials
    February 9, 2012
    Today’s highways require high performance materials, and this means rigorous testing as Patrick Smith reports Highways are under greater pressure than ever today and asphalts have to grant high performances in order to withstand traffic and meet the standards. Studying the plastic permanent deformations in hot mix asphalt (HMA) is very important to obtain useful information for mix designers as an appropriate mix design will reduce the formation of unevenness on road surface. To investigate the effect of mi
  • GSSI offers bridge monitoring tool
    May 19, 2015
    GSSI is introducing the sophistictaed BridgeScan condition assessment system. This package is used for concrete inspection and utility mapping of bridges. Said to be both affordable and versatile, this ground penetrating radar (GPR) equipment can be used to assess concrete condition on bridge decks, as well as parking structures. Using this unit offers accurate assessments of concrete condition, which improves repair cost estimation and saves time and money. With BridgeScan, identification of rebar
  • Securing safer transportation infrastructure through non-destructive technology
    June 16, 2014
    Kevin Vine reports on the use of non-destructive testing for structural analysis of bridges Seven years ago, the overpass collapse in Laval, Québec that led to the death of five people brought to light severe issues with the state of the country’s bridges and transportation infrastructure. More recently, a crack in the Champlain Bridge to Montreal that forced over 160,000 commuters to find alternate routes to work reaffirmed a need for greater emphasis on early detection before a crisis occurs.
  • Krohne Optiwave 6300 C takes the guesswork out of silo measuring
    August 3, 2017
    A variety of issues affect accurate continuous level measurement inside cement plants. The most critical concerns are dust, heavy build-ups, low-reflective media and uneven surfaces in conical and/or air-injected silos with internal objects. Now, new frequency-modulated continuous-wave – FMCW - radar technology, combined with high signal dynamics, offers a way to accurately and reliably measure product levels.