Skip to main content

Advanced structural monitoring from Teleco

Teleco’s novel SHM602 system has been developed in partnership with the Interdepartmental Centre for Buildings and Construction at Bologna University and offers real-time monitoring of structural integrity of structures. This system operates on the basis of dynamic models obtained by means of identification techniques from accelerometric measures performed on the structure to be monitored. It relies on advanced measure, filtering and identification techniques and allows a real-time remote access to all data
January 5, 2016 Read time: 2 mins
8293 Teleco’s novel SHM602 system has been developed in partnership with the Interdepartmental Centre for Buildings and Construction at Bologna University and offers real-time monitoring of structural integrity of structures. This system operates on the basis of dynamic models obtained by means of identification techniques from accelerometric measures performed on the structure to be monitored. It relies on advanced measure, filtering and identification techniques and allows a real-time remote access to all data, including acceleration and temperature.

Advanced features of the SHM602 allow filtering and modelling operations to be performed inside every measuring unit, the use of robust and reliable MEM sensors. The use of a digital bus allows non-invasive and reliable implementation on large structures where traditional analogue systems would require expensive and invasive radial connections and auxiliary hardware to limit signal deterioration over distance. s that must be

The smart architecture of the connection network allows the construction of global models suitable for detecting possible problems in the points where the sensors have been allocated and also in interconnecting substructures. Another important task performed by the computational resources allocated inside every sensing unit concerns the real-time monitoring of the correct performance of every sensor and the automatic exclusion of faulty sensors.

The SHM602 is a modular system and can be configured as required to optimise cost and performance. The SHM602 includes software packages allowing the configuration of the sensor network, data acquisition and storage, and real-time modal analysis of the monitored structures. It can operate both on structures affected by factors such as vehicle traffic, wind or seismic events.

A significant test on the SHM602 has been recently performed on the Manhattan Bridge, New York City, as part of a joint project between Columbia and Bologna Universities. The unit I said to be robust and able to cope with long use in difficult applications.

For more information on companies in this article

Related Content

  • Information technology and transport development
    April 12, 2012
    A team of eminent Russian specialists* introduce exciting new information technologies, such as the Internet of Things, and foresee their promising applications in the field of transport infrastructure development. Global economic growth, combined with explosive digital technology proliferation, brings new challenges to the field of transport infrastructure. Technical advances such as Intelligent Transportation Systems (ITS), vehicle to infrastructure interfaces, global positioning, electronic toll collecti
  • Information technology and transport development
    February 16, 2012
    A team of eminent Russian specialists* introduce exciting new information technologies, such as the Internet of Things, and foresee their promising applications in the field of transport infrastructure development
  • Integrated corridor management offers transportation efficiency
    May 28, 2013
    In the Intelligent Transportation Systems world, the concept of managing roadway or transportation corridors is not new. Smart Corridor concepts have existed for some time, such as the Santa Monica Smart Corridor system from the 1990s. Across the world, a new emerging model for operating roadway transportation networks called integrated corridor management (ICM) has emerged. This is particularly true in California, where several new ICM projects have or are being deployed. There is a new paradigm for corrid
  • SENSKIN project is monitoring the health of dozens of European bridges
    January 19, 2016
    Bridges in seven European countries are part of a three-and-a-half-year programme to develop an inexpensive and low-power wireless structural health monitoring technique. Project SENSKIN, launched last summer in Athens, will run until December 2018. It is focussed on applying a skin-like sensor that offers spatial sensing of irregular surfaces, especially transportation bridges. Up to now, structural health monitoring has relied on a point-based system that requires a dense network of sensors over the bridg