Skip to main content

SENSKIN project is monitoring the health of dozens of European bridges

Bridges in seven European countries are part of a three-and-a-half-year programme to develop an inexpensive and low-power wireless structural health monitoring technique. Project SENSKIN, launched last summer in Athens, will run until December 2018. It is focussed on applying a skin-like sensor that offers spatial sensing of irregular surfaces, especially transportation bridges. Up to now, structural health monitoring has relied on a point-based system that requires a dense network of sensors over the bridg
January 19, 2016 Read time: 2 mins
Bridges in seven European countries are part of a three-and-a-half-year programme to develop an inexpensive and low-power wireless structural health monitoring technique.

Project SENSKIN, launched last summer in Athens, will run until December 2018. It is focussed on applying a skin-like sensor that offers spatial sensing of irregular surfaces, especially transportation bridges.

Up to now, structural health monitoring has relied on a point-based system that requires a dense network of sensors over the bridge, a costly exercise. Conventional sensors may also fail under relatively low stresses and their communication system is unreliable in extreme service conditions.

Because of this, they are not a foolproof alarm of an imminent structural collapse.

However, SENSKIN will be able to withstand and monitor large strains and to self-monitor and report. Emerging Delay Tolerant Networks technology will be used so that sensor output is transmitted even under difficult conditions, such as during an earthquake that would eliminate some communication networks.

SENSKIN will be supported by a decision-support system for “proactive condition-based structural intervention under operating loads and intervention after extreme events”, according to a statement from the project coordinating group, the Institute of Communication and Computer Systems, based at the Democritus University of Thrace in Greece.

Related Content

  • Hamm’s Dr Stefan Klumpp explains future of autonomous compaction
    December 20, 2016
    Autonomous vehicles that can move around without human intervention are not yet a part of everyday life, but they are almost within reach.
  • Riding the sustainable cycle
    October 5, 2020
    It’s taken a while in North America, but “vehicular cycling” has been replaced by “sustainable cycling”, says transportation engineer Tyler Golly.
  • Bridge of international accord from Russia-China
    May 29, 2018
    A new bridge project joining China and Russia is a sign of international accord between the two nations – Mike Woof writes A new bridge spanning what China calls the Heilongjiang River and which is known as the Amur River in Russia, is a clear sign of an important international accord between the two countries. Discussions over the bridge project were first started between China and Russia in the 1980s, with both nations seeing many changes in leadership since that time. But while the political discussion
  • Clever approach to reducing bridge vibrations
    November 14, 2013
    Reducing vibrations on a bridge, supplying high-quality binders to emerging countries and helping small and medium players with warm mix, this month’s stories showcase some innovative bitumen technology solutions - Kristina Smith reports The Kessock Bridge in the Highlands of Scotland has become the third bridge in the UK to be resurfaced with Gussasphalt. A dense mastic asphalt containing Nynas Endura N5, a polymer modified binder, Gussasphalt has been designed to have a longer life than standard mastic as