Skip to main content

SENSKIN project is monitoring the health of dozens of European bridges

Bridges in seven European countries are part of a three-and-a-half-year programme to develop an inexpensive and low-power wireless structural health monitoring technique. Project SENSKIN, launched last summer in Athens, will run until December 2018. It is focussed on applying a skin-like sensor that offers spatial sensing of irregular surfaces, especially transportation bridges. Up to now, structural health monitoring has relied on a point-based system that requires a dense network of sensors over the bridg
January 19, 2016 Read time: 2 mins
Bridges in seven European countries are part of a three-and-a-half-year programme to develop an inexpensive and low-power wireless structural health monitoring technique.

Project SENSKIN, launched last summer in Athens, will run until December 2018. It is focussed on applying a skin-like sensor that offers spatial sensing of irregular surfaces, especially transportation bridges.

Up to now, structural health monitoring has relied on a point-based system that requires a dense network of sensors over the bridge, a costly exercise. Conventional sensors may also fail under relatively low stresses and their communication system is unreliable in extreme service conditions.

Because of this, they are not a foolproof alarm of an imminent structural collapse.

However, SENSKIN will be able to withstand and monitor large strains and to self-monitor and report. Emerging Delay Tolerant Networks technology will be used so that sensor output is transmitted even under difficult conditions, such as during an earthquake that would eliminate some communication networks.

SENSKIN will be supported by a decision-support system for “proactive condition-based structural intervention under operating loads and intervention after extreme events”, according to a statement from the project coordinating group, the Institute of Communication and Computer Systems, based at the Democritus University of Thrace in Greece.

Related Content

  • Developments in concrete road construction
    February 7, 2012
    Innovative developments are pushing forward concrete road construction techniques. The concrete road sector looks to benefit from some key innovations and developments now coming to market or being employed in different territories. Irregular weather and environmental conditions can alter the rate at which concrete cures, with a risk of plastic shrinkage cracks that can compromise the integrity of a pavement. Contractors cannot control the environmental conditions of a paving project and when weather patter
  • New Turkish bridge opens to traffic
    June 30, 2016
    Turkey’s new Osman Gazi Bridge has now opened for traffic. This bridge can carry 40,000 vehicles/day, while halving the travel time needed using previous routes. This is a six lane suspension bridge measuring 3km and spanning the Sea of Marmara. Construction has taken 42 months and the structure has been designed to cope with the risk of earthquakes. The project has been co-ordinated by Japanese construction company IHI, with Siemens handling the role of electro and mechanical contractor. Siemens has dev
  • David Barwell suggests six steps for closing the UK funding gap
    January 11, 2019
    Six steps for closing the UK funding gap Plenty of private money is seeking UK investment opportunities. The government and the infrastructure sector in general must make projects more attractive, writes David Barwell* It is widely acknowledged that the UK faces mounting economic, environmental and social problems if the nation's infrastructure fails to meet present and future demands. Government estimates propose that almost €561 billion is required to bridge the infrastructure funding gap. As part o
  • Advances in materials testing
    April 10, 2012
    Quicker, better, more cost effective materials testing - Kristina Smith writes. Most developments in materials testing technology involve updating and upgrading existing machines, either to meet changes to standards or to satisfy new needs in the market. And occasionally, a manufacturer will come up with something completely new. PUMA - the precision unbound materials analyser - falls into the latter category. It has been developed by Cooper Research Technology and Nottingham Transportation Engineering Cen