Skip to main content

Mersey Gateway Project reaches half-way point across the Mersey

The Mersey Gateway project in England has passed a significant milestone, with over half of the main bridge deck stretching across the River Mersey. Work to install stay cables on the main bridge also passed a key point, with installation of the 31st 150m long cable – the halfway point for stay cable installations on the pylon. When complete, 146 stay cables will support the 1km-long reinforced concrete bridge, with a combined load-bearing weight of more than 53,000tonnes. “We’re now more than 50
March 10, 2017 Read time: 2 mins
The 6126 Mersey Gateway project in England has passed a significant milestone, with over half of the main bridge deck stretching across the River Mersey.

Work to install stay cables on the main bridge also passed a key point, with installation of the 31st 150m long cable – the halfway point for stay cable installations on the pylon.
 
When complete, 146 stay cables will support the 1km-long reinforced concrete bridge, with a combined load-bearing weight of more than 53,000tonnes.
 
“We’re now more than 50% through this highly visual phase of the Mersey Gateway construction,” said Gareth Stuart, project director of the Merseylink construction joint venture. “People will be able to see the stay cables connected to the bridge deck as it emerges across the river week by week.”
 
Each stay cable consists of up to 91 steel strands that sit inside a stay pipe – the outer casing that provides protection from weathering. More than 1,300km of the strands will be used on the project.

Every single strand needs to be installed individually, explained Merseylink’s design manager, George Moir. “It’s gone well so far, and we’re installing around six stays per week from the three pylons. The first two strands are threaded through the stay pipe then the tower crane lifts the pipe up to the anchor point in the upper pylon where the top ends of the strands are fixed into place.
 
“The bottom ends of the strands are then attached to the anchor point in the bridge deck and stressed using a hydraulic system. This enables us to get the correct level of tension needed to support that segment of bridge deck,” said Moir. “We then use a winch system through the stay pipe to winch the remaining strands up one by one. Once all of the strands have been installed they sit in parallel inside the stay pipe to form the stay cable.”
 
The stay cables vary in length; with the shortest measuring approximately 41m and the longest measuring 226m.

For more information on companies in this article

Related Content

  • Montreal’s new Champlain Bridge is shaping up for Christmas
    September 10, 2018
    Montreal’s Champlain Bridges - one going up, one coming down, reports David Arminas The importance of the new Champlain Bridge to Montreal and Canada can’t be overstated, given the crumbling nature of the not-so-old original Champlain Bridge. The original steel truss affair across the St Lawrence River and the adjacent St Lawrence Seaway canal is “a lifeline for residents and businesses” in greater Montréal, according to the national Auditor General - the public sector spending watchdog. “It accommodates
  • Mersey Gateway makes key report’s top 100 global infrastructures
    July 6, 2012
    The Mersey Gateway project has been named as one of the world's most important infrastructure projects by an influential new report. The KMPG Infrastructure 100: World Cities Edition, recognises inventive and well-designed infrastructure projects from cities around the world, and has included the project as an example in innovation an impact on society. The 1km bridge over the River Mersey aims to relieve the pressure from the Silver Jubilee Bridge, and reduce journey times in peak periods.
  • Korean bridge construction poses challenges
    February 23, 2012
    On South Korea's southern coast, an innovative highway sea crossing is providing many engineering challenges
  • Korean bridge construction poses challenges
    April 5, 2012
    On South Korea's southern coast, an innovative highway sea crossing is providing many engineering challenges The new Busan-Geoje crosses from South Korea's second city to its biggest island and is slightly shorter than the 12km of the country's famous Incheon project. In addition the main cable stay bridge for the Busan-Geoje project has a 475m span rather than the 800m of the Incheon central span. However the 8.2km Busan-Geoje project faces perhaps greater technical challenges and also includes a second b