Skip to main content

Interchange project wins major engineering award

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.
December 11, 2015 Read time: 2 mins
The new interchange offers increased capacity and safety and helps cut congestion

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.

FINLEY Engineering was the engineer of record for the four segmental bridges, Number 9, 11, 15 and 19, and provided construction engineering expertise. The segmental bridges were precast, balanced cantilever and erected with a 140.2m launching gantry. The bridge lengths varied from 335.3m to 746.76m in length and are 14.35m-wide, with a maximum span length of 81m. The curved segmental bridge ramps are the third level of the interchange with radii down to 180m and have a maximum superstructure deck height of 29m. above the proposed ground. All of the bridges are supported on 610mm pile foundations and reinforced concrete piers and caps. The project was carried out for 2697 Florida Department of Transportation, the contractor was the Community, Condotte, De Moya Joint Venture and the prime design consultant was BCC Engineering.

The bridge design offered unique challenges integrating underlying roadways, canals and MOT requirements into the layout of these segmental bridge ramps. This project was constructed in the Miami International Airport flight path and had FAA Requirements. The high level segmental flyovers are built over multiple roads that carry 430,000 vehicles/day and are the tightest elevation curves erected in the United States. The all overhead erection eliminated the need for falsework and cranes and eliminated five MOT phases that would have impacted traffic, thereby providing a safer work environment. FINLEY integrated the design into the construction while satisfying the strong aesthetic requirements. The design reduced maintenance and construction costs with the use of external tendons, Diabolos and deviators. The use of polystyrene in the hollow pier columns, except at the base of the caps, eliminated the need for interior formwork and reduced the overall mass of the structure and concrete required.

For more information on companies in this article

Related Content

  • Arcadis for Calcasieu Bridge replacement work
    June 12, 2025
    Replacement of the 70-year-old Calcasieu River Bridge in the US state of Louisiana will revive a connection between the cities of Lake Charles and Westlake.
  • Speed hardening system improves tunnel construction
    February 14, 2012
    BASF claims that its latest innovation will help improve efficiency in tunnel construction operations. Developed by BASF's Construction Chemicals division the new Crystal Speed Hardening system (CSH) is an advanced admixture technology aimed directly at the tunneling market.
  • Danish SolarFuture builds solar facility by Öresund Bridge
    January 10, 2018
    Solar cell panels worth around €270,000 will produce energy for the Øresund Bridge that connects Denmark and Sweden. Danish companies SolarFuture and Solarpark DK have been awarded the contract to install 1,500m² solar panels near the toll station of the Øresund Bridge. The three-year agreement is with Øresundsbro Konsortiet - the Danish-Swedish company that owns and operates the Øresund Bridge. The panel will generate around 4% of the power to operate the bridge, including deck lighting and
  • Itinera wins Sweden’s Skurusunds Bridge near Stockholm
    January 21, 2019
    Italian contractor Itinera will build the new 99m-long and 31m-wide Skurusunds Bridge near Stockholm in Sweden. Trafikverket, the Swedish transport administration, awarded the €75 million contract to Itinera, part of Gruppo Gavio. The new bridge will be parallel to the existing bridge which will remain. It handles around 52,000 vehicles daily, many of them commuting to and from Stockholm. Work will include improvements to traffic junctions at Skuru and Björknäs. The four-lane steel bridge will have